Unknown

Dataset Information

0

Homo- and hetero-oligomerization of hydrophobic pulmonary surfactant proteins SP-B and SP-C in surfactant phospholipid membranes.


ABSTRACT: Pulmonary surfactant is a lipid/protein mixture that reduces surface tension at the respiratory air-water interface in lungs. Among its nonlipidic components are pulmonary surfactant-associated proteins B and C (SP-B and SP-C, respectively). These highly hydrophobic proteins are required for normal pulmonary surfactant function, and whereas past literature works have suggested possible SP-B/SP-C interactions and a reciprocal modulation effect, no direct evidence has been yet identified. In this work, we report an extensive fluorescence spectroscopy study of both intramolecular and intermolecular SP-B and SP-C interactions, using a combination of quenching and FRET steady-state and time-resolved methodologies. These proteins are compartmentalized in full surfactant membranes but not in pure 1-palmitoyl-2-oleoylphosphatidylcholine (POPC) vesicles, in accordance with their previously described preference for liquid disordered phases. From the observed static self-quenching and homo-FRET of BODIPY-FL labeled SP-B, we conclude that this protein forms homoaggregates at low concentration (lipid:protein ratio, 1:1000). Increases in polarization of BODIPY-FL SP-B and steady-state intensity of WT SP-B were observed upon incorporation of under-stoichiometric amounts of WT SP-C. Conversely, Marina Blue-labeled SP-C is quenched by over-stoichiometric amounts of WT SP-B, whereas under-stoichiometric concentrations of the latter actually increase SP-C emission. Time-resolved hetero-FRET from Marina Blue SP-C to BODIPY-FL SP-B confirm distinct protein aggregation behaviors with varying SP-B concentration. Based on these multiple observations, we propose a model for SP-B/SP-C interactions, where SP-C might induce conformational changes on SP-B complexes, affecting its aggregation state. The conclusions inferred from the present work shed light on the synergic functionality of both proteins in the pulmonary surfactant system.

SUBMITTER: Cabre EJ 

PROVIDER: S-EPMC6005437 | biostudies-literature | 2018 Jun

REPOSITORIES: biostudies-literature

altmetric image

Publications

Homo- and hetero-oligomerization of hydrophobic pulmonary surfactant proteins SP-B and SP-C in surfactant phospholipid membranes.

Cabré Elisa J EJ   Martínez-Calle Marta M   Prieto Manuel M   Fedorov Alexander A   Olmeda Bárbara B   Loura Luís M S LMS   Pérez-Gil Jesús J  

The Journal of biological chemistry 20180426 24


Pulmonary surfactant is a lipid/protein mixture that reduces surface tension at the respiratory air-water interface in lungs. Among its nonlipidic components are pulmonary surfactant-associated proteins B and C (SP-B and SP-C, respectively). These highly hydrophobic proteins are required for normal pulmonary surfactant function, and whereas past literature works have suggested possible SP-B/SP-C interactions and a reciprocal modulation effect, no direct evidence has been yet identified. In this  ...[more]

Similar Datasets

| S-EPMC5105191 | biostudies-literature
| S-EPMC8243356 | biostudies-literature
| S-EPMC4571016 | biostudies-literature
| S-EPMC2049033 | biostudies-other
| S-EPMC4315173 | biostudies-literature
| S-EPMC1218735 | biostudies-other
| S-EPMC2856140 | biostudies-literature
| S-EPMC4585734 | biostudies-literature
| S-EPMC4530084 | biostudies-literature
| S-EPMC1223849 | biostudies-other