A Possible Role for Long Interspersed Nuclear Elements-1 (LINE-1) in Huntington's Disease Progression.
Ontology highlight
ABSTRACT: BACKGROUND Recent studies have shown that increased mobilization of Long Interspersed Nuclear Elements-1 (L1) can promote the pathophysiology of multiple neurological diseases. However, its role in Huntington's disease (HD) remains unknown. MATERIAL AND METHODS R6/2 mice - a common mouse model of HD - were used to evaluate changes in L1 mobilization. Pyrosequencing was used to evaluate methylation content changes. L1-ORF1 and L1-ORF2 expression analysis were evaluated by RT-PCR and immunoblotting. Changes in pro-survival signaling were evaluated by L1-ORF overexpression studies and validated in the mouse model by immunohistochemistry and immunoblotting. RESULTS We found an increased mobilization of L1 elements in the caudate genome of R6/2 mice (p<0.05) - a common mouse model of HD - but not in wild-type mice. Subsequent pyrosequencing and expression analysis showed that the L1 elements were hypomethylated and their respective ORFs were overexpressed in the affected tissues. In addition, a significant decrease in the pro-survival proteins such as the phosphoproteins of AKT target proteins, mTORC1 activity, and AMPK alpha levels was observed with the increase in the expression L1-ORF2. CONCLUSIONS These findings indicate that hyperactive retrotransposition of L1 triggers a downstream signaling pathway affecting the neuronal survival pathways via downregulation of mTORC1 activity and AMPKalpha and increasing apoptosis in neurons.
SUBMITTER: Tan H
PROVIDER: S-EPMC6007493 | biostudies-literature | 2018 May
REPOSITORIES: biostudies-literature
ACCESS DATA