Unknown

Dataset Information

0

Acetylation contributes to hypertrophy-caused maturational delay of cardiac energy metabolism.


ABSTRACT: A dramatic increase in cardiac fatty acid oxidation occurs following birth. However, cardiac hypertrophy secondary to congenital heart diseases (CHDs) delays this process, thereby decreasing cardiac energetic capacity and function. Cardiac lysine acetylation is involved in modulating fatty acid oxidation. We thus investigated what effect cardiac hypertrophy has on protein acetylation during maturation. Eighty-four right ventricular biopsies were collected from CHD patients and stratified according to age and the absence (n = 44) or presence of hypertrophy (n = 40). A maturational increase in protein acetylation was evident in nonhypertrophied hearts but not in hypertrophied hearts. The fatty acid ?-oxidation enzymes, long-chain acyl CoA dehydrogenase (LCAD) and ?-hydroxyacyl CoA dehydrogenase (?HAD), were hyperacetylated and their activities positively correlated with their acetylation after birth in nonhypertrophied hearts but not hypertrophied hearts. In line with this, decreased cardiac fatty acid oxidation and reduced acetylation of LCAD and ?HAD occurred in newborn rabbits subjected to cardiac hypertrophy due to an aortocaval shunt. Silencing the mRNA of general control of amino acid synthesis 5-like protein 1 reduced acetylation of LCAD and ?HAD as well as fatty acid oxidation rates in cardiomyocytes. Thus, hypertrophy in CHDs prevents the postnatal increase in myocardial acetylation, resulting in a delayed maturation of cardiac fatty acid oxidation.

SUBMITTER: Fukushima A 

PROVIDER: S-EPMC6012574 | biostudies-literature | 2018 May

REPOSITORIES: biostudies-literature

altmetric image

Publications


A dramatic increase in cardiac fatty acid oxidation occurs following birth. However, cardiac hypertrophy secondary to congenital heart diseases (CHDs) delays this process, thereby decreasing cardiac energetic capacity and function. Cardiac lysine acetylation is involved in modulating fatty acid oxidation. We thus investigated what effect cardiac hypertrophy has on protein acetylation during maturation. Eighty-four right ventricular biopsies were collected from CHD patients and stratified accordi  ...[more]

Similar Datasets

| S-EPMC6907081 | biostudies-literature
| S-EPMC8209424 | biostudies-literature
| S-EPMC4622459 | biostudies-literature
| S-EPMC10995492 | biostudies-literature
| S-EPMC3813434 | biostudies-literature
| S-EPMC3389167 | biostudies-literature
| S-EPMC5682957 | biostudies-literature
| S-EPMC9023175 | biostudies-literature
2023-05-01 | GSE229143 | GEO
| S-EPMC9283757 | biostudies-literature