Unknown

Dataset Information

0

Glycosylated superparamagnetic nanoparticle gradients for osteochondral tissue engineering.


ABSTRACT: In developmental biology, gradients of bioactive signals direct the formation of structural transitions in tissue that are key to physiological function. Failure to reproduce these native features in an in vitro setting can severely limit the success of bioengineered tissue constructs. In this report, we introduce a facile and rapid platform that uses magnetic field alignment of glycosylated superparamagnetic iron oxide nanoparticles, pre-loaded with growth factors, to pattern biochemical gradients into a range of biomaterial systems. Gradients of bone morphogenetic protein 2 in agarose hydrogels were used to spatially direct the osteogenesis of human mesenchymal stem cells and generate robust osteochondral tissue constructs exhibiting a clear mineral transition from bone to cartilage. Interestingly, the smooth gradients in growth factor concentration gave rise to biologically-relevant, emergent structural features, including a tidemark transition demarcating mineralized and non-mineralized tissue and an osteochondral interface rich in hypertrophic chondrocytes. This platform technology offers great versatility and provides an exciting new opportunity for overcoming a range of interfacial tissue engineering challenges.

SUBMITTER: Li C 

PROVIDER: S-EPMC6018621 | biostudies-literature | 2018 Sep

REPOSITORIES: biostudies-literature

altmetric image

Publications

Glycosylated superparamagnetic nanoparticle gradients for osteochondral tissue engineering.

Li Chunching C   Armstrong James Pk JP   Pence Isaac J IJ   Kit-Anan Worrapong W   Puetzer Jennifer L JL   Correia Carreira Sara S   Moore Axel C AC   Stevens Molly M MM  

Biomaterials 20180521


In developmental biology, gradients of bioactive signals direct the formation of structural transitions in tissue that are key to physiological function. Failure to reproduce these native features in an in vitro setting can severely limit the success of bioengineered tissue constructs. In this report, we introduce a facile and rapid platform that uses magnetic field alignment of glycosylated superparamagnetic iron oxide nanoparticles, pre-loaded with growth factors, to pattern biochemical gradie  ...[more]

Similar Datasets

| S-EPMC3773241 | biostudies-literature
| S-EPMC2698962 | biostudies-literature
| S-EPMC7942178 | biostudies-literature
| S-EPMC5560093 | biostudies-other
| S-EPMC8787149 | biostudies-literature
| S-EPMC3644393 | biostudies-literature
| S-EPMC8517716 | biostudies-literature
| S-EPMC9660579 | biostudies-literature
| S-EPMC6309375 | biostudies-literature
| S-EPMC8175243 | biostudies-literature