Unknown

Dataset Information

0

Molecular Mechanisms for the Adaptive Switching Between the OAS/RNase L and OASL/RIG-I Pathways in Birds and Mammals.


ABSTRACT: Host cells develop the OAS/RNase L [2'-5'-oligoadenylate synthetase (OAS)/ribonuclease L] system to degrade cellular and viral RNA, and/or the OASL/RIG-I (2'-5'-OAS like/retinoic acid inducible protein I) system to enhance RIG-I-mediated IFN induction, thus providing the first line of defense against viral infection. The 2'-5'-OAS-like (OASL) protein may activate the OAS/RNase L system using its typical OAS-like domain (OLD) or mimic the K63-linked pUb to enhance antiviral activity of the OASL/RIG-I system using its two tandem ubiquitin-like domains (UBLs). We first describe that divergent avian (duck and ostrich) OASL inhibit the replication of a broad range of RNA viruses by activating and magnifying the OAS/RNase L pathway in a UBL-dependent manner. This is in sharp contrast to mammalian enzymatic OASL, which activates and magnifies the OAS/RNase L pathway in a UBL-independent manner, similar to 2'-5'-oligoadenylate synthetase 1 (OAS1). We further show that both avian and mammalian OASL can reversibly exchange to activate and magnify the OAS/RNase L and OASL/RIG-I system by introducing only three key residues, suggesting that ancient OASL possess 2-5A [px5'A(2'p5'A)n; x?=?1-3; n???2] activity and has functionally switched to the OASL/RIG-I pathway recently. Our findings indicate the molecular mechanisms involved in the switching of avian and mammalian OASL molecules to activate and enhance the OAS/RNase L and OASL/RIG-I pathways in response to infection by RNA viruses.

SUBMITTER: Rong E 

PROVIDER: S-EPMC6019448 | biostudies-literature | 2018

REPOSITORIES: biostudies-literature

altmetric image

Publications

Molecular Mechanisms for the Adaptive Switching Between the OAS/RNase L and OASL/RIG-I Pathways in Birds and Mammals.

Rong Enguang E   Wang Xiaoxue X   Chen Hualan H   Yang Chenghuai C   Hu Jiaxiang J   Liu Wenjie W   Wang Zeng Z   Chen Xiaoyun X   Zheng Haixue H   Pu Juan J   Sun Honglei H   Smith Jacqueline J   Burt David W DW   Liu Jinhua J   Li Ning N   Huang Yinhua Y  

Frontiers in immunology 20180620


Host cells develop the OAS/RNase L [2'-5'-oligoadenylate synthetase (OAS)/ribonuclease L] system to degrade cellular and viral RNA, and/or the OASL/RIG-I (2'-5'-OAS like/retinoic acid inducible protein I) system to enhance RIG-I-mediated IFN induction, thus providing the first line of defense against viral infection. The 2'-5'-OAS-like (OASL) protein may activate the OAS/RNase L system using its typical OAS-like domain (OLD) or mimic the K63-linked pUb to enhance antiviral activity of the OASL/R  ...[more]

Similar Datasets

| S-EPMC4349862 | biostudies-literature
| S-EPMC7185432 | biostudies-literature
| S-EPMC4674827 | biostudies-other
| S-EPMC10835031 | biostudies-literature
| S-EPMC6326797 | biostudies-literature
| S-EPMC4446440 | biostudies-literature
2021-09-04 | GSE183300 | GEO
| S-EPMC6421468 | biostudies-literature
| S-EPMC7084095 | biostudies-literature
| S-EPMC4101812 | biostudies-literature