Structure and zonal expression of olfactory receptors in the olfactory epithelium of the goat, Capra hircus.
Ontology highlight
ABSTRACT: The mammalian olfactory system employs sophisticated mechanisms to detect and recognize an extensive range of smells. In rodents, the olfactory epithelium (OE), situated within the nasal cavity, mainly comprises four defined endoturbinates and several ectoturbinates. Olfactory receptors (ORs) belong to a large family, comprising over 1,000 genes in rodents, which are expressed in olfactory sensory neurons in the OE that detect odor molecules. The rodent OE is divided into four topographically distinct zones, defined by individual OR distribution. However, although the structural complexity and the zonal organization of mammalian OE may contribute to successfully interpreting olfactory information, it remains poorly understood. In this study, we investigated the nasal cavity structure and zonal organization of the OE in goats. Morphological observations revealed that the goat nasal cavity possessed well-developed endoturbinates and ectoturbinates and had a structure similar to that of rodents and sheep, previously reported in other studies. In situ hybridization was used to analyze the expression pattern of ORs, NADPH:quinone oxidoreductase 1, and olfactory cell adhesion molecules as markers of zonal organization in the goat OE. Based on the expression patterns of these genes, we concluded that the goat OE was divided into four zones. The well-developed structure of the nasal cavity and distribution of each OR in the OE were similar to those found in rodents, suggesting that these features were highly conserved between mammals and may have fundamental roles in discriminating among numerous odor molecules in the environment.
SUBMITTER: Octura JER
PROVIDER: S-EPMC6021871 | biostudies-literature | 2018 Jun
REPOSITORIES: biostudies-literature
ACCESS DATA