Project description:Previous studies provided evidence for the alteration of brain cholesterol homeostasis in 129.Mecp2-null mice, an experimental model of Rett syndrome. The efficacy of statins in improving motor symptoms and prolonging survival of mutant mice suggested a potential role of statins in the therapy of Rett syndrome. In the present study, we show that Mecp2 deletion had no effect on brain and reduced serum cholesterol levels and lovastatin (1.5 mg/kg, twice weekly as in the previous study) had no effects on motor deficits and survival when Mecp2 deletion was expressed on a background strain (C57BL/6J; B6) differing from that used in the earlier study. These findings indicate that the effects of statins may be background specific and raise important issues to consider when contemplating clinical trials. The reduction of the brain cholesterol metabolite 24S-hydroxycholesterol (24S-OHC) found in B6.Mecp2-null mice suggests the occurrence of changes in brain cholesterol metabolism and the potential utility of using plasma levels of 24S-OHC as a biomarker of brain cholesterol homeostasis in RTT.
Project description:Many real-world searches (e.g., radiology and baggage screening) have rare targets. When targets are rare, observers perform rapid, incomplete searches, leading to higher miss rates. To improve search for rare (10% prevalence) targets, we provided eye movement feedback (EMF) to observers during their searches. Although the nature of the EMF varied across experiments, each method informed observers about the regions of the display that had not yet been inspected. We hypothesized that feedback would help guide attention to unsearched areas and increase the proportion of the display searched before making a target-absent response, thereby increasing accuracy. An eye tracker was used to mark fixated areas by either removing a semiopaque gray overlay (Experiments 1 and 4) as portions of the display were fixated or by adding the overlay once the eye left a segment of the image (Experiments 2 and 4). Experiment 3 provided automated EMF, such that a new region was uncovered every 540 milliseconds. Across experiments, we varied whether people searched for "Waldo" in images from "Where's Waldo?" search books or searched for a T among offset Ls. We found weak evidence that EMF improves accuracy in Experiment 1. However, in the remaining experiments, EMF had no effect (Experiment 4), or even reduced accuracy (Experiments 2 and 3). We conclude that the one positive result we found is likely a Type I error and that the EMF method that we used is unlikely to improve visual search performance.
Project description:We investigated if a carbohydrate (CHO) mouth rinse may attenuate global fatigue and improve 4-km cycling time trial (TT4km) performance. After a preliminary session, cyclists (n = 9) performed a TT4km after a CHO or placebo (PLA) mouth rinse. Mean power output, time, and ratings of perceived exertion (RPE) were recorded throughout the TT4km. Twitch interpolation responses (%VA; voluntary activation and ?Tw; delta peak twitch torque) were compared pre and post TT4km with traditional statistics and effect size (ES) analysis. Time-to-complete the 4 km and mean power output were comparable between CHO (386.4 ± 28.0 s) and PLA (385.4 ± 22.4 s). A lower central (p = 0.054) and peripheral (p = 0.02) fatigue in CHO than in PLA were suggested by an extremely-large ES in %VA (manipulation main effect: p = 0.052, d = 1.18; manipulation-by-time interaction effect: p = 0.08, d = 1.00) and an extremely, very-large ES in ?Tw (manipulation main effect: p = 0.07, d = 0.97; time-by-manipulation interaction effect: p = 0.09, d = 0.89). The RPE increased slower in CHO than in PLA (p = 0.051; d = 0.7). The apparent reduction in global fatigue (central and peripheral) and RPESLOPE with only one CHO mouth rinse were not translated into improved TT4km performance. Further tests may be required to verify if these likely differences in global fatigue might represent an edge in the short-lasting cycling time trial performance.
Project description:Background. Propensity score usage seems to be growing in popularity leading researchers to question the possible role of propensity scores in prediction modeling, despite the lack of a theoretical rationale. It is suspected that such requests are due to the lack of differentiation regarding the goals of predictive modeling versus causal inference modeling. Therefore, the purpose of this study is to formally examine the effect of propensity scores on predictive performance. Our hypothesis is that a multivariable regression model that adjusts for all covariates will perform as well as or better than those models utilizing propensity scores with respect to model discrimination and calibration. Methods. The most commonly encountered statistical scenarios for medical prediction (logistic and proportional hazards regression) were used to investigate this research question. Random cross-validation was performed 500 times to correct for optimism. The multivariable regression models adjusting for all covariates were compared with models that included adjustment for or weighting with the propensity scores. The methods were compared based on three predictive performance measures: (1) concordance indices; (2) Brier scores; and (3) calibration curves. Results. Multivariable models adjusting for all covariates had the highest average concordance index, the lowest average Brier score, and the best calibration. Propensity score adjustment and inverse probability weighting models without adjustment for all covariates performed worse than full models and failed to improve predictive performance with full covariate adjustment. Conclusion. Propensity score techniques did not improve prediction performance measures beyond multivariable adjustment. Propensity scores are not recommended if the analytical goal is pure prediction modeling.
Project description:Transcranial direct current stimulation (tDCS) is a brain stimulation technique that can enhance motor activity by stimulating the motor path. Thus, tDCS has the potential of improving the performance of brain-computer interfaces during motor neurorehabilitation. tDCS effects depend on several aspects, including the current density, which usually varies between 0.02 and 0.08 mA/cm2, and the location of the stimulation electrodes. Hence, testing tDCS montages at several current levels would allow the selection of current parameters for improving stimulation outcomes and the comparison of montages. In a previous study, we found that cortico-cerebellar tDCS shows potential of enhancing right-hand motor imagery. In this paper, we aim to evaluate the effects of the focal stimulation of the motor cortex over motor imagery. In particular, the effect of supplying tDCS with a 4 × 1 ring montage, which consists in placing an anode on the motor cortex and four cathodes around it, over motor imagery was assessed with different current densities. Electroencephalographic (EEG) classification into rest or right-hand/feet motor imagery was evaluated on five healthy subjects for two stimulation schemes: applying tDCS for 10 min on the (1) right-hand or (2) feet motor cortex before EEG recording. Accuracy differences related to the tDCS intensity, as well as ? and ? band power changes, were tested for each subject and tDCS modality. In addition, a simulation of the electric field induced by the montage was used to describe its effect on the brain. Results show no improvement trends on classification for the evaluated currents, which is in accordance with the observation of variable EEG band power results despite the focused stimulation. The lack of effects is probably related to the underestimation of the current intensity required to apply a particular current density for small electrodes and the relatively short inter-electrode distance. Hence, higher current intensities should be evaluated in the future for this montage.
Project description:How do physical interactions with others change our own motor behavior? Utilizing a novel motor learning paradigm in which the hands of two - individuals are physically connected without their conscious awareness, we investigated how the interaction forces from a partner adapt the motor behavior in physically interacting humans. We observed the motor adaptations during physical interactions to be mutually beneficial such that both the worse and better of the interacting partners improve motor performance during and after interactive practice. We show that these benefits cannot be explained by multi-sensory integration by an individual, but require physical interaction with a reactive partner. Furthermore, the benefits are determined by both the interacting partner's performance and similarity of the partner's behavior to one's own. Our results demonstrate the fundamental neural processes underlying human physical interactions and suggest advantages of interactive paradigms for sport-training and physical rehabilitation.
Project description:Dentin matrix protein 1 (DMP1) is essential to odontogenesis. Its mutations in human subjects lead to dental problems such as dental deformities, hypomineralization and periodontal impairment. Primarily, DMP1 is considered as an extracellular matrix protein that promotes hydroxyapatite formation and activates intracellular signaling pathway via interacting with αvβ3 integrin. Recent in vitro studies suggested that DMP1 might also act as a transcription factor. In this study, we examined whether full-length DMP1 could function as a transcription factor in the nucleus and regulate odontogenesis in vivo. We first demonstrated that a patient with the DMP1 M1V mutation, which presumably causes a loss of the secretory DMP1 but does not affect the nuclear translocation of DMP1, shows a typical rachitic tooth defect. Furthermore, we generated transgenic mice expressing (NLS)DMP1, in which the endoplasmic reticulum (ER) entry signal sequence of DMP1 was replaced by a nuclear localization signal (NLS) sequence, under the control of a 3.6 kb rat type I collagen promoter plus a 1.6 kb intron 1. We then crossbred the (NLS)DMP1 transgenic mice with Dmp1 null mice to express the (NLS)DMP1 in Dmp1-deficient genetic background. Although immunohistochemistry demonstrated that (NLS)DMP1 was localized in the nuclei of the preodontoblasts and odontoblasts, the histological, morphological and biochemical analyses showed that it failed to rescue the dental and periodontal defects as well as the delayed tooth eruption in Dmp1 null mice. These data suggest that the full-length DMP1 plays no apparent role in the nucleus during odontogenesis.
Project description:Spontaneous deamination of cytosine to uracil in DNA is a ubiquitous source of C→T mutations, but occurs with a half life of ∼50 000 years. In contrast, cytosine within sunlight induced cyclobutane dipyrimidine dimers (CPD's), deaminate within hours to days. Methylation of C increases the frequency of CPD formation at PyCG sites which correlate with C→T mutation hotspots in skin cancers. MeCP2 binds to mCG sites and acts as a transcriptional regulator and chromatin modifier affecting thousands of genes, but its effect on CPD formation and deamination is unknown. We report that the methyl CpG binding domain of MeCP2 (MBD) greatly enhances C=mC CPD formation at a TCmCG site in duplex DNA and binds with equal or better affinity to the CPD-containing duplex compared with the undamaged duplex. In comparison, MBD does not enhance T=mC CPD formation at a TTmCG site, but instead increases CPD formation at the adjacent TT site. MBD was also found to completely suppress deamination of the T=mCG CPD, suggesting that MeCP2 may have the capability to both suppress UV mutagenesis at PymCpG sites as well as enhance it.
Project description:STOP (stable tubule only polypeptide) null mice display neurochemical and behavioral abnormalities that resemble several well-recognized features of schizophrenia. Recent evidence suggests that the hematopoietic growth factor erythropoietin improves the cognitive performance of schizophrenics. The mechanism, however, by which erythropoietin is able to improve the cognition of schizophrenics is unclear. To address this question, we first determined whether acute administration of the erythropoietin analog known as darbepoetin alpha (D. alpha) improved performance deficits of STOP null mice in the novel objective recognition task (NORT). NORT performance of STOP null mice, but not wild-type littermates, was enhanced 3 h after a single injection of D. alpha (25 microg/kg, i.p.). Improved NORT performance was accompanied by elevated NADPH diaphorase staining in the ventral hippocampus as well as medial and cortical aspects of the amygdala, indicative of increased nitric oxide synthase (NOS) activity in these structures. NOS generates the intracellular messenger nitric oxide (NO) implicated in learning and memory. In keeping with this hypothesis, D. alpha significantly increased NO metabolite levels (nitrate and nitrite, NOx) in the hippocampus of both wild-type and STOP null mice. The NOS inhibitor, N (G)-nitro-L- arginine methyl ester (L-NAME; 25 mg/kg, i.p.), completely reversed the increase in hippocampal NOx levels produced by D. alpha. Moreover, L-NAME also inhibited the ability of D. alpha to improve the NORT performance of STOP null mice. Taken together, these observations suggest D. alpha enhances the NORT performance of STOP null mice by increasing production of NO.
Project description:Background: Obesity is a worldwide public health problem with increasing prevalence and affects 80% of diabetes mellitus type 2 cases. Zebrafish (Danio rerio) are an established model organism for studying obesity and diabetes including diabetic microvascular complications. We aimed to determine whether physical activity is an appropriate tool to examine training effects in zebrafish and to analyse metabolic and transcriptional processes in trained zebrafish. Methods: A 2- and 8-weeks experimental training phase protocol with adult zebrafish in a swim tunnel system was established. We examined zebrafish basic characteristics before and after training such as body weight, body length and maximum speed and considered overfeeding as an additional parameter in the 8-weeks training protocol. Ultimately, the effects of training and overfeeding on blood glucose, muscle core metabolism and liver gene expression using RNA-Seq were investigated. Results: Zebrafish maximum speed was correlated with body length and was significantly increased after 2 weeks of training. Maximum swim speed further increased after 8 weeks of training in both the normalfed and the overfed groups, but training was found not to be sufficient in preventing weight gain in overfed fish. Metabolome and transcriptome profiling in trained fish exhibited increased blood glucose levels in the short-term and upregulated energy supply pathways in the long-term. Conclusion: Swim training is a valuable tool to study effects of physical activity in zebrafish, which is accompanied by metabolic and transcriptional adaptations.