Unknown

Dataset Information

0

DEEPre: sequence-based enzyme EC number prediction by deep learning.


ABSTRACT: Motivation:Annotation of enzyme function has a broad range of applications, such as metagenomics, industrial biotechnology, and diagnosis of enzyme deficiency-caused diseases. However, the time and resource required make it prohibitively expensive to experimentally determine the function of every enzyme. Therefore, computational enzyme function prediction has become increasingly important. In this paper, we develop such an approach, determining the enzyme function by predicting the Enzyme Commission number. Results:We propose an end-to-end feature selection and classification model training approach, as well as an automatic and robust feature dimensionality uniformization method, DEEPre, in the field of enzyme function prediction. Instead of extracting manually crafted features from enzyme sequences, our model takes the raw sequence encoding as inputs, extracting convolutional and sequential features from the raw encoding based on the classification result to directly improve the prediction performance. The thorough cross-fold validation experiments conducted on two large-scale datasets show that DEEPre improves the prediction performance over the previous state-of-the-art methods. In addition, our server outperforms five other servers in determining the main class of enzymes on a separate low-homology dataset. Two case studies demonstrate DEEPre's ability to capture the functional difference of enzyme isoforms. Availability and implementation:The server could be accessed freely at http://www.cbrc.kaust.edu.sa/DEEPre. Contact:xin.gao@kaust.edu.sa. Supplementary information:Supplementary data are available at Bioinformatics online.

SUBMITTER: Li Y 

PROVIDER: S-EPMC6030869 | biostudies-literature | 2018 Mar

REPOSITORIES: biostudies-literature

altmetric image

Publications

DEEPre: sequence-based enzyme EC number prediction by deep learning.

Li Yu Y   Wang Sheng S   Umarov Ramzan R   Xie Bingqing B   Fan Ming M   Li Lihua L   Gao Xin X  

Bioinformatics (Oxford, England) 20180301 5


<h4>Motivation</h4>Annotation of enzyme function has a broad range of applications, such as metagenomics, industrial biotechnology, and diagnosis of enzyme deficiency-caused diseases. However, the time and resource required make it prohibitively expensive to experimentally determine the function of every enzyme. Therefore, computational enzyme function prediction has become increasingly important. In this paper, we develop such an approach, determining the enzyme function by predicting the Enzym  ...[more]

Similar Datasets

| S-EPMC10664415 | biostudies-literature
| S-EPMC10772988 | biostudies-literature
2023-03-31 | GSE165175 | GEO
| S-EPMC6355112 | biostudies-literature
| S-EPMC8929166 | biostudies-literature
2023-03-31 | GSE165173 | GEO
2023-03-31 | GSE165174 | GEO
| S-EPMC5445391 | biostudies-literature
| S-BSST732 | biostudies-other
2024-02-03 | GSE254493 | GEO