Unknown

Dataset Information

0

Stream acidification and reduced aquatic prey availability are associated with dietary shifts in an obligate riparian Neotropical migratory songbird.


ABSTRACT: Streams and their surrounding riparian habitats are linked by reciprocal exchanges of insect prey essential to both aquatic and terrestrial consumers. Aquatic insects comprise a large proportion of total prey in riparian habitats and are opportunistically exploited by terrestrial insectivores; however, several species of songbirds are known to preferentially target aquatic prey via specialized foraging strategies. For these songbirds, reduced availability of aquatic insects via stream acidification may result in compensatory changes in provisioning during the nesting period, thereby influencing both adult and nestling diet composition. In this study, we used DNA metabarcoding to test the hypothesis that an obligate riparian Neotropical migratory songbird, the Louisiana Waterthrush (Parkesia motacilla), expands its diet to compensate for the loss of preferred aquatic prey taxa (primarily pollution-sensitive Ephemeroptera, Plecoptera, and Trichoptera) as a result of stream acidification. Our results revealed that both adult and nestling waterthrush exhibited an increase in dietary richness and niche breadth resulting from the consumption of terrestrial prey taxa in acidified riparian habitats. In contrast, compensatory dietary shifts were not observed in syntopic Neotropical migrant species known to primarily provision terrestrial prey taxa. In addition to providing support for our hypothesis that waterthrush compensate for stream acidification and aquatic prey limitations by expanding their diet, our findings highlight the vulnerability of Louisiana Waterthrush to anthropogenic disturbances that compromise stream quality or reduce the availability of pollution-sensitive aquatic insects.

SUBMITTER: Trevelline BK 

PROVIDER: S-EPMC6037135 | biostudies-literature | 2018

REPOSITORIES: biostudies-literature

altmetric image

Publications

Stream acidification and reduced aquatic prey availability are associated with dietary shifts in an obligate riparian Neotropical migratory songbird.

Trevelline Brian K BK   Nuttle Tim T   Porter Brady A BA   Brouwer Nathan L NL   Hoenig Brandon D BD   Steffensmeier Zachary D ZD   Latta Steven C SC  

PeerJ 20180706


Streams and their surrounding riparian habitats are linked by reciprocal exchanges of insect prey essential to both aquatic and terrestrial consumers. Aquatic insects comprise a large proportion of total prey in riparian habitats and are opportunistically exploited by terrestrial insectivores; however, several species of songbirds are known to preferentially target aquatic prey via specialized foraging strategies. For these songbirds, reduced availability of aquatic insects via stream acidificat  ...[more]

Similar Datasets

| S-EPMC3568049 | biostudies-literature
| S-EPMC6413900 | biostudies-literature
| S-EPMC8292764 | biostudies-literature
| S-EPMC4205087 | biostudies-literature
| S-EPMC7532709 | biostudies-literature
2016-12-15 | GSE87549 | GEO
| S-EPMC5644693 | biostudies-other
| S-EPMC2746017 | biostudies-literature
| S-EPMC4983605 | biostudies-literature
| S-EPMC2776443 | biostudies-literature