ABSTRACT: Mass cytometry (MC) uses mass spectrometry to simultaneously detect multiple metal-conjugated antibodies on single cells, thereby enabling the detailed study of cellular function. Here, for the first time, we applied MC to the analysis of platelets. We developed a panel of 14 platelet-specific metal-tagged antibodies (targeting cluster of differentiation [CD] 9, CD29, CD31, CD36, CD41, CD42a, CD42b, CD61, CD62P, CD63, CD107a, CD154, glycoprotein [GP] VI and activated integrin ?IIb?3) and compared this panel with two fluorescence flow cytometry (FFC) panels (CD41, CD42b, and CD61; or CD42b, CD62P, and activated integrin ?IIb?3) in the evaluation of activation-dependent changes in glycoprotein expression on healthy subject and Glanzmann thrombasthenia (GT) platelets. High-dimensional analysis of surface markers detected by MC identified previously unappreciated subpopulations of platelets in healthy donors. As expected, MC and FFC revealed that GT platelets had significantly reduced CD41, CD61, and activated integrin ?IIb?3 surface expression. MC also revealed that surface expression of CD9, CD42a and CD63 were elevated, CD31, CD154 and GPVI were reduced and CD29, CD36, CD42b, CD62P and CD107a were similar on GT platelets compared to healthy donor platelets. In summary, MC revealed distinct platelet subtypes in healthy subjects and novel alterations in surface glycoproteins on GT platelets.