Heterologous production of levopimaric acid in Saccharomyces cerevisiae.
Ontology highlight
ABSTRACT: BACKGROUND:Levopimaric acid (LA), a type of diterpene resin acid produced by plants, is a significant industrial intermediate that is mainly produced via phytoextraction. This work aimed to apply synthetic biology to produce LA in yeast strains from a simple carbon source. RESULTS:Levopimaradiene (LP), the precursor of LA, was produced via LP synthase (LPS) expression in yeast. LPS was then modified by N-terminal truncating and site-directed mutagenesis. The strain containing t79LPSMM (79 N-terminal amino acid truncating and M593I/Y700F mutation) produced 6.92 mg/L of LP, which were 23-fold higher than the strain containing LPS. Next, t79LPSMM was expressed in a new metabolically engineered chassis, and the final LP production increased 164-folds to 49.21 mg/L. Three cytochrome P450 reductases (CPRs) were co-expressed with CYP720B1 (the enzyme responsible for LA production from LP) in yeast to evaluate their LA producing abilities, and the CPR from Taxus cuspidata (TcCPR) was found to be the best (achieved 23.13 mg/L of LA production). CYP720B1 and TcCPR genes overexpression in the multi-copy site of the S.cerevisiae genome led to a 1.9-fold increase in LA production to 45.24 mg/L in a shake-flask culture. Finally, LA production was improved to 400.31 mg/L via fed-batch fermentation in a 5-L bioreactor. CONCLUSIONS:This is the first report to produce LA in a yeast cell factory and the highest titer of LA is achieved.
SUBMITTER: Liu T
PROVIDER: S-EPMC6050663 | biostudies-literature | 2018 Jul
REPOSITORIES: biostudies-literature
ACCESS DATA