Sub-50 nm Iron-Nitrogen-Doped Hollow Carbon Sphere-Encapsulated Iron Carbide Nanoparticles as Efficient Oxygen Reduction Catalysts.
Ontology highlight
ABSTRACT: Sub-50 nm iron-nitrogen-doped hollow carbon sphere-encapsulated iron carbide nanoparticles (Fe3C-Fe,N/C) are synthesized by using a triblock copolymer of poly(styrene-b-2-vinylpyridine-b-ethylene oxide) as a soft template. Their typical features, including a large surface area (879.5 m2 g-1), small hollow size (?16 nm), and nitrogen-doped mesoporous carbon shell, and encapsulated Fe3C nanoparticles generate a highly active oxygen reduction reaction (ORR) performance. Fe3C-Fe,N/C hollow spheres exhibit an ORR performance comparable to that of commercially available 20 wt% Pt/C in alkaline electrolyte, with a similar half-wave potential, an electron transfer number close to 4, and lower H2O2 yield of less than 5%. It also shows noticeable ORR catalytic activity under acidic conditions, with a high half-wave potential of 0.714 V, which is only 59 mV lower than that of 20 wt% Pt/C. Moreover, Fe3C-Fe,N/C has remarkable long-term durability and tolerance to methanol poisoning, exceeding Pt/C regardless of the electrolyte.
SUBMITTER: Tan H
PROVIDER: S-EPMC6051398 | biostudies-literature | 2018 Jul
REPOSITORIES: biostudies-literature
ACCESS DATA