Unknown

Dataset Information

0

Residual Convolutional Neural Network for the Determination of IDH Status in Low- and High-Grade Gliomas from MR Imaging.


ABSTRACT: Purpose: Isocitrate dehydrogenase (IDH) mutations in glioma patients confer longer survival and may guide treatment decision making. We aimed to predict the IDH status of gliomas from MR imaging by applying a residual convolutional neural network to preoperative radiographic data.Experimental Design: Preoperative imaging was acquired for 201 patients from the Hospital of University of Pennsylvania (HUP), 157 patients from Brigham and Women's Hospital (BWH), and 138 patients from The Cancer Imaging Archive (TCIA) and divided into training, validation, and testing sets. We trained a residual convolutional neural network for each MR sequence (FLAIR, T2, T1 precontrast, and T1 postcontrast) and built a predictive model from the outputs. To increase the size of the training set and prevent overfitting, we augmented the training set images by introducing random rotations, translations, flips, shearing, and zooming.Results: With our neural network model, we achieved IDH prediction accuracies of 82.8% (AUC = 0.90), 83.0% (AUC = 0.93), and 85.7% (AUC = 0.94) within training, validation, and testing sets, respectively. When age at diagnosis was incorporated into the model, the training, validation, and testing accuracies increased to 87.3% (AUC = 0.93), 87.6% (AUC = 0.95), and 89.1% (AUC = 0.95), respectively.Conclusions: We developed a deep learning technique to noninvasively predict IDH genotype in grade II-IV glioma using conventional MR imaging using a multi-institutional data set. Clin Cancer Res; 24(5); 1073-81. ©2017 AACR.

SUBMITTER: Chang K 

PROVIDER: S-EPMC6051535 | biostudies-literature | 2018 Mar

REPOSITORIES: biostudies-literature

altmetric image

Publications

Residual Convolutional Neural Network for the Determination of <i>IDH</i> Status in Low- and High-Grade Gliomas from MR Imaging.

Chang Ken K   Bai Harrison X HX   Zhou Hao H   Su Chang C   Bi Wenya Linda WL   Agbodza Ena E   Kavouridis Vasileios K VK   Senders Joeky T JT   Boaro Alessandro A   Beers Andrew A   Zhang Biqi B   Capellini Alexandra A   Liao Weihua W   Shen Qin Q   Li Xuejun X   Xiao Bo B   Cryan Jane J   Ramkissoon Shakti S   Ramkissoon Lori L   Ligon Keith K   Wen Patrick Y PY   Bindra Ranjit S RS   Woo John J   Arnaout Omar O   Gerstner Elizabeth R ER   Zhang Paul J PJ   Rosen Bruce R BR   Yang Li L   Huang Raymond Y RY   Kalpathy-Cramer Jayashree J  

Clinical cancer research : an official journal of the American Association for Cancer Research 20171122 5


<b>Purpose:</b> Isocitrate dehydrogenase (<i>IDH</i>) mutations in glioma patients confer longer survival and may guide treatment decision making. We aimed to predict the <i>IDH</i> status of gliomas from MR imaging by applying a residual convolutional neural network to preoperative radiographic data.<b>Experimental Design:</b> Preoperative imaging was acquired for 201 patients from the Hospital of University of Pennsylvania (HUP), 157 patients from Brigham and Women's Hospital (BWH), and 138 pa  ...[more]

Similar Datasets

| S-EPMC8017403 | biostudies-literature
| S-EPMC7944911 | biostudies-literature
| S-EPMC7594560 | biostudies-literature
| S-EPMC10162113 | biostudies-literature
| S-EPMC6176806 | biostudies-other
| S-EPMC4677415 | biostudies-literature
| S-EPMC7281812 | biostudies-literature
| S-EPMC5561497 | biostudies-literature
| S-EPMC5700844 | biostudies-literature
| S-EPMC8377095 | biostudies-literature