Short-Term Transcriptional Response of Microbial Communities to Nitrogen Fertilization in a Pine Forest Soil.
Ontology highlight
ABSTRACT: Numerous studies have examined the long-term effect of experimental nitrogen (N) deposition in terrestrial ecosystems; however, N-specific mechanistic markers are difficult to disentangle from responses to other environmental changes. The strongest picture of N-responsive mechanistic markers is likely to arise from measurements over a short (hours to days) time scale immediately after inorganic N deposition. Therefore, we assessed the short-term (3-day) transcriptional response of microbial communities in two soil strata from a pine forest to a high dose of N fertilization (ca. 1 mg/g of soil material) in laboratory microcosms. We hypothesized that N fertilization would repress the expression of fungal and bacterial genes linked to N mining from plant litter. However, despite N suppression of microbial respiration, the most pronounced differences in functional gene expression were between strata rather than in response to the N addition. Overall, ?4% of metabolic genes changed in expression with N addition, while three times as many (?12%) were significantly different across the different soil strata in the microcosms. In particular, we found little evidence of N changing expression levels of metabolic genes associated with complex carbohydrate degradation (CAZymes) or inorganic N utilization. This suggests that direct N repression of microbial functional gene expression is not the principle mechanism for reduced soil respiration immediately after N deposition. Instead, changes in expression with N addition occurred primarily in general cell maintenance areas, for example, in ribosome-related transcripts. Transcriptional changes in functional gene abundance in response to N addition observed in longer-term field studies likely result from changes in microbial composition.IMPORTANCE Ecosystems are receiving increased nitrogen (N) from anthropogenic sources, including fertilizers and emissions from factories and automobiles. High levels of N change ecosystem functioning. For example, high inorganic N decreases the microbial decomposition of plant litter, potentially reducing nutrient recycling for plant growth. Understanding how N regulates microbial decomposition can improve the prediction of ecosystem functioning over extended time scales. We found little support for the conventional view that high N supply represses the expression of genes involved in decomposition or alters the expression of bacterial genes for inorganic N cycling. Instead, our study of pine forest soil 3 days after N addition showed changes in microbial gene expression related to cell maintenance and stress response. This highlights the challenge of establishing predictive links between microbial gene expression levels and measures of ecosystem function.
SUBMITTER: Albright MBN
PROVIDER: S-EPMC6052259 | biostudies-literature | 2018 Aug
REPOSITORIES: biostudies-literature
ACCESS DATA