Investigation of dynamics in BMIM TFSA ionic liquid through variable temperature and pressure NMR relaxometry and diffusometry.
Ontology highlight
ABSTRACT: A comprehensive variable temperature, pressure and frequency multinuclear (1H, 2H, and 19F) magnetic resonance study was undertaken on selectively deuterated 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide (BMIM TFSA) ionic liquid isotopologues. This study builds on our earlier investigation of the effects of increasing alkyl chain length on diffusion and dynamics in imidazolium-based TFSA ionic liquids. Fast field cycling 1H T1 data revealed multiple modes of motion. Through calculation of diffusion coefficient (D) values and activation energies, the low- and high-field regimes were assigned to the translational and reorientation dynamics respectively. Variable-pressure 2H T1 measurements reveal site-dependent interactions in the cation with strengths in the order MD3 > CD3 > CD2, indicating dissimilarities in the electric field gradients along the alkyl chain, with the CD2 sites having the largest gradient. Additionally, the ? saturation effect in T1 vs. P was observed for all three sites, suggesting significant reduction of the short-range rapid reorientational dynamics. This reduction was also deduced from the variable pressure 1H T1 data, which showed an approach to saturation for both the methyl and butyl group terminal methyl sites. Pressure-dependent D measurements show independent motions for both cations and anions, with the cations having greater D values over the entire pressure range.
SUBMITTER: Pilar K
PROVIDER: S-EPMC6052354 | biostudies-literature | 2017
REPOSITORIES: biostudies-literature
ACCESS DATA