Unknown

Dataset Information

0

Catalytic activities for methanol oxidation on ultrathin CuPt3 wavy nanowires with/without smart polymer.


ABSTRACT: Superior catalytic activity and stability for the methanol oxidation reaction of a direct methanol-air fuel cell is achieved with "clean" ultrathin CuPt3 wavy nanowires. The nanowires are synthesized for the first time by functionalizing CuPt3 nanoparticles with amine-terminated poly(N-isopropylacrylamide), a thermosensitive "smart" polymer having a phase transition at a liquid-electrolyte Tt (low critical solution temperature, 35 °C). Interestingly, retention of the functionalizing smart polymer on the surface of the nanowires reversibly switches the catalytic activity to lower rates above the Tt. The catalytic performance of the "clean" CuPt3 nanowires is shown to be significantly improved over that of commercial Pt black catalyst, owing to their unique structural advantages and bimetallic synergetic effect.

SUBMITTER: Fu G 

PROVIDER: S-EPMC6054026 | biostudies-literature | 2016 Aug

REPOSITORIES: biostudies-literature

altmetric image

Publications

Catalytic activities for methanol oxidation on ultrathin CuPt<sub>3</sub> wavy nanowires with/without smart polymer.

Fu Gengtao G   Yan Xiaoxiao X   Cui Zhiming Z   Sun Dongmei D   Xu Lin L   Tang Yawen Y   Goodenough John B JB   Lee Jong-Min JM  

Chemical science 20160517 8


Superior catalytic activity and stability for the methanol oxidation reaction of a direct methanol-air fuel cell is achieved with "clean" ultrathin CuPt<sub>3</sub> wavy nanowires. The nanowires are synthesized for the first time by functionalizing CuPt<sub>3</sub> nanoparticles with amine-terminated poly(<i>N</i>-isopropylacrylamide), a thermosensitive "smart" polymer having a phase transition at a liquid-electrolyte <i>T</i><sub>t</sub> (low critical solution temperature, 35 °C). Interestingly  ...[more]

Similar Datasets

| S-EPMC6432224 | biostudies-literature
| S-EPMC9920629 | biostudies-literature
| S-EPMC4757964 | biostudies-literature
| S-EPMC6180330 | biostudies-literature
| S-EPMC10534687 | biostudies-literature
| S-EPMC4994005 | biostudies-literature
| S-EPMC5115312 | biostudies-literature
| S-EPMC7146865 | biostudies-literature
| S-EPMC9419211 | biostudies-literature
| S-EPMC6733171 | biostudies-literature