ABSTRACT: BACKGROUND:Component-resolved diagnostics (CRD) are promising tools for diagnosing food allergy, offering the potential to determine specific phenotypes and to develop patient-tailored risk profiles. Nevertheless, the diagnostic accuracy of these tests varies across studies; thus, their clinical utility remains unclear. Therefore, we synthesized the evidence from studies investigating the diagnostic accuracy, risk assessment ability, and cost-effectiveness of CRD for food allergy. METHODS:We systematically searched 10 electronic databases and four clinical trial registries for studies published from January 2000 to February 2017. The quality of included studies was assessed using QUADAS-2. Due to heterogeneity, we narratively synthesized the evidence. RESULTS:Eleven studies met inclusion criteria, altogether recruiting 1098 participants. The food allergies investigated were cow's milk, hen's egg, peanut, hazelnut, and shrimp. The components with the highest diagnostic accuracy for each allergen, along with their sensitivity-specificity pairs, were as follows: Bos d 4 for cow's milk (62.0% and 87.5%), Gal d 1 for hen's egg (84.2% and 89.8% for heated egg, and 60.6% and 97.1% for raw egg), Ara h 6 for peanut (94.9% and 95.1%), Cor a 14 for hazelnut (100% and 93.8%), and Lit v 1 for shrimp (82.8% and 56.3%) allergy. CONCLUSION:Selected components of cow's milk, hen's egg, peanut, hazelnut, and shrimp allergen showed high specificity, but lower sensitivity. However, few studies exist for each component, and studies vary widely regarding the cutoff values used, making it challenging to synthesize findings across studies. Further research is needed to determine clinically appropriate cutoff values, risk assessment abilities, and cost-effectiveness of CRD approaches.