Unknown

Dataset Information

0

The Scaffold-Articular Cartilage Interface: A Combined In Vitro and In Silico Analysis Under Controlled Loading Conditions.


ABSTRACT: The optimal method to integrate scaffolds with articular cartilage has not yet been identified, in part because of our lack of understanding about the mechanobiological conditions at the interface. Our objective was to quantify the effect of mechanical loading on integration between a scaffold and articular cartilage. We hypothesized that increased number of loading cycles would have a detrimental effect on interface integrity. The following models were developed: (i) an in vitro scaffold-cartilage explant system in which compressive sinusoidal loading cycles were applied for 14 days at 1?Hz, 5 days per week, for either 900, 1800, 3600, or 7200 cycles per day and (ii) an in silico inhomogeneous, biphasic finite element model (bFEM) of the scaffold-cartilage construct that was used to characterize interface micromotion, stress, and fluid flow under the prescribed loading conditions. In accordance with our hypothesis, mechanical loading significantly decreased scaffold-cartilage interface strength compared to unloaded controls regardless of the number of loading cycles. The decrease in interfacial strength can be attributed to abrupt changes in vertical displacement, fluid pressure, and compressive stresses along the interface, which reach steady-state after only 150 cycles of loading. The interfacial mechanical conditions are further complicated by the mismatch between the homogeneous properties of the scaffold and the depth-dependent properties of the articular cartilage. Finally, we suggest that mechanical conditions at the interface can be more readily modulated by increasing pre-incubation time before the load is applied, as opposed to varying the number of loading cycles.

SUBMITTER: Chen T 

PROVIDER: S-EPMC6056181 | biostudies-literature | 2018 Sep

REPOSITORIES: biostudies-literature

altmetric image

Publications

The Scaffold-Articular Cartilage Interface: A Combined In Vitro and In Silico Analysis Under Controlled Loading Conditions.

Chen Tony T   McCarthy Moira M MM   Guo Hongqiang H   Warren Russell R   Maher Suzanne A SA  

Journal of biomechanical engineering 20180901 9


The optimal method to integrate scaffolds with articular cartilage has not yet been identified, in part because of our lack of understanding about the mechanobiological conditions at the interface. Our objective was to quantify the effect of mechanical loading on integration between a scaffold and articular cartilage. We hypothesized that increased number of loading cycles would have a detrimental effect on interface integrity. The following models were developed: (i) an in vitro scaffold-cartil  ...[more]

Similar Datasets

| S-EPMC4084593 | biostudies-literature
| S-EPMC3501122 | biostudies-literature
| S-EPMC4767543 | biostudies-literature
| S-EPMC2584257 | biostudies-other
| S-EPMC5226797 | biostudies-literature
| S-EPMC8668357 | biostudies-literature
| S-EPMC2779377 | biostudies-other
| S-EPMC7436011 | biostudies-literature
| S-EPMC9168693 | biostudies-literature
| S-EPMC3119794 | biostudies-literature