Unknown

Dataset Information

0

Exposure to galactic cosmic radiation compromises DNA repair and increases the potential for oncogenic chromosomal rearrangement in bronchial epithelial cells.


ABSTRACT: Participants in deep space missions face protracted exposure to galactic cosmic radiation (GCR). In this setting, lung cancer is a significant component of the overall risk of radiation-exposure induced death. Here we investigate persistent effects of GCR exposure on DNA repair capacity in lung-derived epithelial cells, using an enzyme-stimulated chromosomal rearrangement as an endpoint. Replicate cell cultures were irradiated with energetic 48Ti ions (a GCR component) or reference ?-rays. After a six-day recovery, they were challenged by expression of a Cas9/sgRNA pair that creates double-strand breaks simultaneously in the EML4 and ALK loci, misjoining of which creates an EML4-ALK fusion oncogene. Misjoining was significantly elevated in 48Ti-irradiated populations, relative to the baseline rate in mock-irradiated controls. The effect was not seen in ?-ray irradiated populations exposed to equal or higher radiation doses. Sequence analysis of the EML4-ALK joints from 48Ti-irradiated cultures showed that they were far more likely to contain deletions, sometimes flanked by short microhomologies, than equivalent samples from mock-irradiated cultures, consistent with a shift toward error-prone alternative nonhomologous end joining repair. Results suggest a potential mechanism by which a persistent physiological effect of GCR exposure may increase lung cancer risk.

SUBMITTER: Li Z 

PROVIDER: S-EPMC6056477 | biostudies-literature | 2018 Jul

REPOSITORIES: biostudies-literature

altmetric image

Publications

Exposure to galactic cosmic radiation compromises DNA repair and increases the potential for oncogenic chromosomal rearrangement in bronchial epithelial cells.

Li Z Z   Jella K K KK   Jaafar L L   Li S S   Park S S   Story M D MD   Wang H H   Wang Y Y   Dynan W S WS  

Scientific reports 20180723 1


Participants in deep space missions face protracted exposure to galactic cosmic radiation (GCR). In this setting, lung cancer is a significant component of the overall risk of radiation-exposure induced death. Here we investigate persistent effects of GCR exposure on DNA repair capacity in lung-derived epithelial cells, using an enzyme-stimulated chromosomal rearrangement as an endpoint. Replicate cell cultures were irradiated with energetic <sup>48</sup>Ti ions (a GCR component) or reference γ-  ...[more]

Similar Datasets

| S-EPMC7900210 | biostudies-literature
| S-EPMC6351080 | biostudies-literature
| S-EPMC5928241 | biostudies-literature
2017-12-19 | GSE108187 | GEO
| S-EPMC6216093 | biostudies-literature
| S-EPMC5870806 | biostudies-literature
| S-EPMC4371914 | biostudies-literature
| S-EPMC7236977 | biostudies-literature
| S-EPMC5056393 | biostudies-literature
| PRJNA422769 | ENA