Project description:BackgroundEosinophilic myocarditis (EM) secondary to eosinophilic granulomatosis with polyangiitis (EGPA) is a rare disease, for which cardiac magnetic resonance imaging (CMRI) is a useful non-invasive modality for diagnosis. We present a case of EM in a patient who recently recovered from COVID-19 and discuss the role of CMRI and endomyocardial biopsy (EMB) to differentiate between COVID-19-associated myocarditis and EM.Case summaryA 20-year-old Hispanic male with a history of sinusitis and asthma, and who recently recovered from COVID-19, presented to the emergency room with pleuritic chest pain, dyspnoea on exertion, and cough. His presentation labs were pertinent for leucocytosis, eosinophilia, elevated troponin, and elevated erythrocyte sedimentation rate and C-reactive protein. The electrocardiogram showed sinus tachycardia. Echocardiogram showed an ejection fraction of 40%. The patient was admitted, and on day 2 of admission, he underwent CMRI which showed findings of EM and mural thrombi. On hospital day 3, the patient underwent right heart catheterization and EMB which confirmed EM. The patient was treated with steroids and mepolizumab. He was discharged on hospital day 7 and continued outpatient heart failure treatment.DiscussionThis is a unique case of EM and heart failure with reduced ejection fraction as a presentation of EGPA, in a patient who recently recovered from COVID-19. In this case, CMRI and EMB were critical to identify the cause of myocarditis and helped in the optimal management of this patient.
Project description:BackgroundThe diagnostic value of cardiac magnetic resonance imaging (MRI) employing the 2018 Lake Louise criteria in pediatric and adolescent patients with acute myocarditis is undefined.ObjectiveTo evaluate the diagnostic value of the Lake Louise criteria in pediatric and adolescent patients with suspected acute myocarditis and to show the utility of cardiac MRI for follow-up in this patient cohort.Materials and methodsForty-three patients (age range: 8-21 years) with suspected acute myocarditis and 13 control patients who underwent cardiac MRI were retrospectively analyzed. T2-weighted and late gadolinium enhancement imaging were performed in all patients. T1 and T2 mapping were available in 26/43 patients (60%). The Lake Louise criteria were assessed. In 27/43 patients (63%), cardiac MRI follow-up was available. Receiver operating characteristic analysis, Pearson's correlation coefficient and paired Student's t-test were used for statistical analysis.ResultsIn the total cohort, the Lake Louise criteria achieved a sensitivity of 86% (95% confidence interval [CI]: 72-95%) and a specificity of 100% (95% CI: 79-100%) for the diagnosis of acute myocarditis. In the subgroup of patients with available mapping parameters, the diagnostic performance of the Lake Louise criteria was higher when mapping parameters were implemented into the score (area under the receiver operating characteristic curve: 0.944 vs. 0.870; P=0.033). T2 relaxation times were higher in patients with admission to the intermediate care unit and were associated with the length of intermediate care unit stay (r=0.879, P=0.049). Cardiac MRI markers of active inflammation decreased on follow-up examinations (e.g., T1 relaxation times: 1,032±39 ms vs. 975±33 ms, P<0.001; T2 relaxation times: 58±5 ms vs. 54±5 ms, P=0.003).ConclusionThe Lake Louise criteria have a high diagnostic performance for the diagnosis of acute myocarditis and are a valuable tool for follow-up in pediatric and adolescent patients. The mapping techniques enhance the diagnostic performance of the 2018 Lake Louise criteria.
Project description:There is growing evidence of the potential for cardiac involvement in patients who have been infected with COVID-19. In this case study, we present a patient with no history of cardiovascular disease, who was hospitalized for COVID-19 pneumonia and subsequently recovered. Despite normal serum troponin levels and left ventricular structure and function, multi-parametric cardiac magnetic resonance imaging revealed a classic myocarditis-like pattern of injury approximately 6 months after his convalescence. Physicians should be aware of the possibility of late myocardial injury/inflammation in patients with recovered COVID-19, even in the absence of elevated troponin levels and/or left ventricular dysfunction. <Learning objective: To understand the potential for COVID-19 patients to develop myocardial injury. To recognize that myocarditis can occur in patients with resolved COVID-19 infection months after resolution of the infection and in the absence of left ventricular dysfunction and troponin elevation.>.
Project description:ObjectivesUltrasmall superparamagnetic particles of iron oxide (USPIO)-enhanced MRI can detect tissue-resident macrophage activity and identify cellular inflammation within tissues. We hypothesised that USPIO-enhanced MRI would provide a non-invasive imaging technique that would improve the diagnosis and management of patients with acute myocarditis.MethodsTen volunteers and 14 patients with suspected acute myocarditis underwent T2, T2* and late gadolinium enhancement (LGE) 3T MRI, with further T2* imaging at 24 hours after USPIO (ferumoxytol, 4 mg/kg) infusion, at baseline and 3 months. Myocardial oedema and USPIO enhancement were determined within areas of LGE as well as throughout the myocardium.ResultsMyocarditis was confirmed in nine of the 14 suspected cases of myocarditis. There was greater myocardial oedema in regions of LGE in patients with myocarditis when compared with healthy volunteer myocardium (T2 value, 57.1±5.3 vs 46.7±1.6 ms, p<0.0001). There was no demonstrable difference in USPIO enhancement between patients and volunteers even within regions displaying LGE (change in R2*, 35.0±15.0 vs 37.2±9.6 s-1, p>0.05). Imaging after 3 months in patients with myocarditis revealed a reduction in volume of LGE, a reduction in oedema measures within regions displaying LGE and improvement in ejection fraction (mean -19.7 mL, 95% CI (-0.5 to -40.0)), -5.8 ms (-0.9 to -10.7) and +6% (0.5% to 11.5%), respectively, p<0.05 for all).ConclusionIn patients with acute myocarditis, USPIO-enhanced MRI does not provide additional clinically relevant information to LGE and T2 mapping MRI. This suggests that tissue-resident macrophages do not provide a substantial contribution to the myocardial inflammation in this condition.Clinical trial registration NCT02319278; Results.
Project description:Giant cell myocarditis, but not cardiac sarcoidosis, is known to cause fulminant myocarditis resulting in severe heart failure. However, giant cell myocarditis and cardiac sarcoidosis are pathologically similar, and attempts at pathological differentiation between the two remain difficult. We are presenting a case of fulminant myocarditis that has pathological features suggestive of cardiac sarcoidosis, but clinically mimicking giant cell myocarditis. This patient was treated with cyclosporine and prednisone and recovered well. This case we believe challenges our current understanding of these intertwined conditions. By obtaining a sense of severity of cardiac involvement via delayed hyperenhancement of cardiac magnetic resonance imaging, we were more inclined to treat this patient as giant cell myocarditis with cyclosporine. This resulted in excellent improvement of patient's cardiac function as shown by delayed hyperenhancement images, early perfusion images, and SSFP videos.
Project description:AimsGiant cell myocarditis (GCM) is an inflammatory cardiomyopathy akin to cardiac sarcoidosis (CS). We decided to study the findings of GCM on cardiac magnetic resonance (CMR) imaging and to compare GCM with CS.Methods and resultsCMR studies of 18 GCM patients were analyzed and compared with 18 CS controls matched for age, sex, left ventricular (LV) ejection fraction and presenting cardiac manifestations. The analysts were blinded to clinical data. On admission, the duration of symptoms (median) was 0.2 months in GCM vs. 2.4 months in CS (P = 0.002), cardiac troponin T was elevated (>50 ng/L) in 16/17 patients with GCM and in 2/16 with CS (P < 0.001), their respective median plasma B-type natriuretic propeptides measuring 4488 ng/L and 1223 ng/L (P = 0.011). On CMR imaging, LV diastolic volume was smaller in GCM (177 ± 32 mL vs. 211 ± 58 mL, P = 0.014) without other volumetric or wall thickness measurements differing between the groups. Every GCM patient had multifocal late gadolinium enhancement (LGE) in a distribution indistinguishable from CS both longitudinally, circumferentially, and radially across the LV segments. LGE mass averaged 17.4 ± 6.3% of LV mass in GCM vs 25.0 ± 13.4% in CS (P = 0.037). Involvement of insertion points extending across the septum into the right ventricular wall, the "hook sign" of CS, was present in 53% of GCM and 50% of CS.ConclusionIn GCM, CMR findings are qualitatively indistinguishable from CS despite myocardial inflammation being clinically more acute and injurious. When matched for LV dysfunction and presenting features, LV size and LGE mass are smaller in GCM.
Project description:ImportanceThe utility of cardiac magnetic resonance imaging (MRI) as a screening tool for myocarditis in competitive student athletes returning to training after recovering from coronavirus disease 2019 (COVID-19) infection is unknown.ObjectiveTo describe the prevalence and severity of cardiac MRI findings of myocarditis in a population of competitive student athletes recovering from COVID-19.Design, setting, and participantsIn this case series, an electronic health record search was performed at our institution (University of Wisconsin) to identify all competitive athletes (a consecutive sample) recovering from COVID-19, who underwent gadolinium-enhanced cardiac MRI between January 1, 2020, and November 29, 2020. The MRI findings were reviewed by 2 radiologists experienced in cardiac imaging, using the updated Lake Louise criteria. Serum markers of myocardial injury and inflammation (troponin-I, B-type natriuretic peptide, C-reactive protein, and erythrocyte sedimentation rate), an electrocardiogram, transthoracic echocardiography, and relevant clinical data were obtained.ExposuresCOVID-19 infection, confirmed using reverse transcription-polymerase chain reaction testing.Main outcomes and measuresPrevalence and severity of MRI findings consistent with myocarditis among young competitive athletes recovering from COVID-19.ResultsA total of 145 competitive student athletes (108 male and 37 female individuals; mean age, 20 years; range, 17-23 years) recovering from COVID-19 were included. Most patients had mild (71 [49.0%]) or moderate (40 [27.6%]) symptoms during the acute infection or were asymptomatic (24 [16.6%]). Symptoms were not specified or documented in 10 patients (6.9%). No patients required hospitalization. Cardiac MRIs were performed a median of 15 days (range, 11-194 days) after patients tested positive for COVID-19. Two patients had MRI findings consistent with myocarditis (1.4% [95% CI, 0.4%-4.9%]). Of these, 1 patient had marked nonischemic late gadolinium enhancement and T2-weighted signal abnormalities over multiple segments, along with an abnormal serum troponin-I level; the second patient had 1-cm nonischemic mild late gadolinium enhancement and mild T2-weighted signal abnormalities, with normal laboratory values.Conclusions and relevanceIn this case series study, based on MRI findings, there was a low prevalence of myocarditis (1.4%) among student athletes recovering from COVID-19 with no or mild to moderate symptoms. Thus, the utility of cardiac MRI as a screening tool for myocarditis in this patient population is questionable.
Project description:To evaluate clinical and cardiac magnetic resonance (CMR) short-term follow-up (FU) in patients with vaccine-associated myocarditis, pericarditis or myo-pericarditis (VAMP) following COVID-19 vaccination. We retrospectively analyzed 44 patients (2 women, mean age: 31.7 ± 15.1 years) with clinical and CMR manifestations of VAMP, recruited from 13 large tertiary national centers. Inclusion criteria were troponin raise, interval between the last vaccination dose and onset of symptoms < 25 days and symptoms-to-CMR < 20 days. 29/44 patients underwent a short-term FU-CMR with a median time of 3.3 months. Ventricular volumes and CMR findings of cardiac injury were collected in all exams. Mean interval between the last vaccination dose and the onset of symptoms was 6.2 ± 5.6 days. 30/44 patients received a vaccination with Comirnaty, 12/44 with Spikevax, 1/44 with Vaxzevria and 1/44 with Janssen (18 after the first dose of vaccine, 20 after the second and 6 after the "booster" dose). Chest pain was the most frequent symptom (41/44), followed by fever (29/44), myalgia (17/44), dyspnea (13/44) and palpitations (11/44). At baseline, left ventricular ejection fraction (LV-EF) was reduced in 7 patients; wall motion abnormalities have been detected in 10. Myocardial edema was found in 35 (79.5%) and LGE in 40 (90.9%) patients. Clinical FU revealed symptoms persistence in 8/44 patients. At FU-CMR, LV-EF was reduced only in 2 patients, myocardial edema was present in 8/29 patients and LGE in 26/29. VAMPs appear to have a mild clinical presentation, with self-limiting course and resolution of CMR signs of active inflammation at short-term follow-up in most of the cases.
Project description:A 33-year-old woman with newly diagnosed disseminated tuberculosis presented with acute heart failure and incidental findings of intracardiac thrombus, demonstrating possible tuberculous myocarditis. (Level of Difficulty: Intermediate.).