Unknown

Dataset Information

0

Characterization of the caprolactam degradation pathway in Pseudomonas jessenii using mass spectrometry-based proteomics.


ABSTRACT: Some bacterial cultures are capable of growth on caprolactam as sole carbon and nitrogen source, but the enzymes of the catabolic pathway have not been described. We isolated a caprolactam-degrading strain of Pseudomonas jessenii from soil and identified proteins and genes putatively involved in caprolactam metabolism using quantitative mass spectrometry-based proteomics. This led to the discovery of a caprolactamase and an aminotransferase that are involved in the initial steps of caprolactam conversion. Additionally, various proteins were identified that likely are involved in later steps of the pathway. The caprolactamase consists of two subunits and demonstrated high sequence identity to the 5-oxoprolinases. Escherichia coli cells expressing this caprolactamase did not convert 5-oxoproline but were able to hydrolyze caprolactam to form 6-aminocaproic acid in an ATP-dependent manner. Characterization of the aminotransferase revealed that the enzyme deaminates 6-aminocaproic acid to produce 6-oxohexanoate with pyruvate as amino acceptor. The amino acid sequence of the aminotransferase showed high similarity to subgroup II ?-aminotransferases of the PLP-fold type I proteins. Finally, analyses of the genome sequence revealed the presence of a caprolactam catabolism gene cluster comprising a set of genes involved in the conversion of caprolactam to adipate.

SUBMITTER: Otzen M 

PROVIDER: S-EPMC6061476 | biostudies-literature | 2018 Aug

REPOSITORIES: biostudies-literature

altmetric image

Publications

Characterization of the caprolactam degradation pathway in Pseudomonas jessenii using mass spectrometry-based proteomics.

Otzen Marleen M   Palacio Cyntia C   Janssen Dick B DB  

Applied microbiology and biotechnology 20180531 15


Some bacterial cultures are capable of growth on caprolactam as sole carbon and nitrogen source, but the enzymes of the catabolic pathway have not been described. We isolated a caprolactam-degrading strain of Pseudomonas jessenii from soil and identified proteins and genes putatively involved in caprolactam metabolism using quantitative mass spectrometry-based proteomics. This led to the discovery of a caprolactamase and an aminotransferase that are involved in the initial steps of caprolactam c  ...[more]

Similar Datasets

| EGAC00001002236 | EGA
| S-EPMC5461537 | biostudies-literature
| S-EPMC4285588 | biostudies-literature
| S-EPMC4423236 | biostudies-literature
| S-EPMC6638856 | biostudies-literature
| S-EPMC8130870 | biostudies-literature
| S-EPMC8341206 | biostudies-literature
| S-EPMC4587597 | biostudies-literature
| S-EPMC7398313 | biostudies-literature
| S-EPMC3125555 | biostudies-literature