Unknown

Dataset Information

0

Learned protein embeddings for machine learning.


ABSTRACT:

Motivation

Machine-learning models trained on protein sequences and their measured functions can infer biological properties of unseen sequences without requiring an understanding of the underlying physical or biological mechanisms. Such models enable the prediction and discovery of sequences with optimal properties. Machine-learning models generally require that their inputs be vectors, and the conversion from a protein sequence to a vector representation affects the model's ability to learn. We propose to learn embedded representations of protein sequences that take advantage of the vast quantity of unmeasured protein sequence data available. These embeddings are low-dimensional and can greatly simplify downstream modeling.

Results

The predictive power of Gaussian process models trained using embeddings is comparable to those trained on existing representations, which suggests that embeddings enable accurate predictions despite having orders of magnitude fewer dimensions. Moreover, embeddings are simpler to obtain because they do not require alignments, structural data, or selection of informative amino-acid properties. Visualizing the embedding vectors shows meaningful relationships between the embedded proteins are captured.

Availability and implementation

The embedding vectors and code to reproduce the results are available at https://github.com/fhalab/embeddings_reproduction/.

Supplementary information

Supplementary data are available at Bioinformatics online.

SUBMITTER: Yang KK 

PROVIDER: S-EPMC6061698 | biostudies-literature | 2018 Aug

REPOSITORIES: biostudies-literature

altmetric image

Publications

Learned protein embeddings for machine learning.

Yang Kevin K KK   Wu Zachary Z   Bedbrook Claire N CN   Arnold Frances H FH  

Bioinformatics (Oxford, England) 20180801 15


<h4>Motivation</h4>Machine-learning models trained on protein sequences and their measured functions can infer biological properties of unseen sequences without requiring an understanding of the underlying physical or biological mechanisms. Such models enable the prediction and discovery of sequences with optimal properties. Machine-learning models generally require that their inputs be vectors, and the conversion from a protein sequence to a vector representation affects the model's ability to  ...[more]

Similar Datasets

| S-EPMC9188115 | biostudies-literature
| S-EPMC7959646 | biostudies-literature
| S-EPMC6021505 | biostudies-literature
| S-EPMC10311290 | biostudies-literature
| S-EPMC8053968 | biostudies-literature
| S-EPMC8668950 | biostudies-literature
| S-EPMC6922053 | biostudies-literature
| S-EPMC8076181 | biostudies-literature
2013-01-01 | E-GEOD-29210 | biostudies-arrayexpress
| S-EPMC9629347 | biostudies-literature