Mechanical dissipation from charge and spin transitions in oxygen-deficient SrTiO3 surfaces.
Ontology highlight
ABSTRACT: Bodies in relative motion separated by a gap of a few nanometers can experience a tiny friction force. This non-contact dissipation can have various origins and can be successfully measured by a sensitive pendulum atomic force microscope tip oscillating laterally above the surface. Here, we report on the observation of dissipation peaks at selected voltage-dependent tip-surface distances for oxygen-deficient strontium titanate (SrTiO3) surface at low temperatures (T = 5 K). The observed dissipation peaks are attributed to tip-induced charge and spin state transitions in quantum-dot-like entities formed by single oxygen vacancies (and clusters thereof, possibly through a collective mechanism) at the SrTiO3 surface, which in view of technological and fundamental research relevance of the material opens important avenues for further studies and applications.
SUBMITTER: Kisiel M
PROVIDER: S-EPMC6063934 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA