Distinct multiple fermionic states in a single topological metal.
Ontology highlight
ABSTRACT: Among the quantum materials that have recently gained interest are the topological insulators, wherein symmetry-protected surface states cross in reciprocal space, and the Dirac nodal-line semimetals, where bulk bands touch along a line in k-space. However, the existence of multiple fermion phases in a single material has not been verified yet. Using angle-resolved photoemission spectroscopy (ARPES) and first-principles electronic structure calculations, we systematically study the metallic material Hf2Te2P and discover properties, which are unique in a single topological quantum material. We experimentally observe weak topological insulator surface states and our calculations suggest additional strong topological insulator surface states. Our first-principles calculations reveal a one-dimensional Dirac crossing-the surface Dirac-node arc-along a high-symmetry direction which is confirmed by our ARPES measurements. This novel state originates from the surface bands of a weak topological insulator and is therefore distinct from the well-known Fermi arcs in semimetals.
SUBMITTER: Hosen MM
PROVIDER: S-EPMC6070493 | biostudies-literature | 2018 Aug
REPOSITORIES: biostudies-literature
ACCESS DATA