Unknown

Dataset Information

0

Role of Mn2+ Doping in the Preparation of Core-Shell Structured Fe₃O₄@upconversion Nanoparticles and Their Applications in T₁/T₂-Weighted Magnetic Resonance Imaging, Upconversion Luminescent Imaging and Near-Infrared Activated Photodynamic Therapy.


ABSTRACT: Core-shell (C/S) structured upconversion coated Fe₃O₄ nanoparticles (NPs) are of great interest due to their potential as magnetic resonance imaging (MRI) and upconversion luminescent (UCL) imaging agents, as well as near-infrared activated photodynamic therapy (PDT) platforms. When C/S structured Fe₃O₄@Mn2+-doped NaYF₄:Yb/Er NPs were prepared previously, well-defined C/S-NPs could not be formed without the doping of Mn2+ during synthesis. Here, the role of Mn2+ doping on the synthesis of core-shell structured magnetic-upconversion nanoparticles (MUCNPs) is investigated in detail. Core-shell-shell nanoparticles (C/S/S-MUCNPs) with Fe₃O₄ as the core, an inert layer of Mn2+-doped NaYF₄ and an outer shell consisting of Mn2+-doped NaYF₄:Yb/Er were prepared. To further develop C/S/S-MUCNPs applications in the biological field, amphiphilic poly(maleic anhydride-alt-1-octadecene) (C18PMH) modified with amine functionalized methoxy poly(ethylene glycol) (C18PMH-mPEG) was used as a capping ligand to modify the surface of C/S/S-MUCNPs to improve biocompatibility. UCL imaging, T₁-weighted MRI ascribed to the Mn2+ ions and T₂-weighted MRI ascribed to the Fe₃O₄ core of C/S/S-MUCNPs were then evaluated. Finally, chlorine e6 (Ce6) was loaded on the C/S/S-MUCNPs and the PDT performance of these NPs was explored. Mn2+ doping is an effective method to control the formation of core-shell structured MUCNPs, which would be potential candidate as multifunctional nanoprobes for future T₁/T₂-weighted MR/UCL imaging and PDT platforms.

SUBMITTER: Luo Y 

PROVIDER: S-EPMC6070927 | biostudies-literature | 2018 Jun

REPOSITORIES: biostudies-literature

altmetric image

Publications

Role of Mn<sup>2+</sup> Doping in the Preparation of Core-Shell Structured Fe₃O₄@upconversion Nanoparticles and Their Applications in T₁/T₂-Weighted Magnetic Resonance Imaging, Upconversion Luminescent Imaging and Near-Infrared Activated Photodynamic Therapy.

Luo Yang Y   Zhang Wei W   Liao Zhengfang Z   Yang Shengnan S   Yang Shengtao S   Li Xinhua X   Zuo Fang F   Luo Jianbin J  

Nanomaterials (Basel, Switzerland) 20180626 7


Core-shell (C/S) structured upconversion coated Fe₃O₄ nanoparticles (NPs) are of great interest due to their potential as magnetic resonance imaging (MRI) and upconversion luminescent (UCL) imaging agents, as well as near-infrared activated photodynamic therapy (PDT) platforms. When C/S structured Fe₃O₄@Mn<sup>2+</sup>-doped NaYF₄:Yb/Er NPs were prepared previously, well-defined C/S-NPs could not be formed without the doping of Mn<sup>2+</sup> during synthesis. Here, the role of Mn<sup>2+</sup>  ...[more]

Similar Datasets

| S-EPMC6435707 | biostudies-literature
| S-EPMC4317689 | biostudies-literature
| S-EPMC11673105 | biostudies-literature
| S-EPMC9419758 | biostudies-literature
| S-EPMC4118939 | biostudies-literature
| S-EPMC11751201 | biostudies-literature
| S-EPMC5691150 | biostudies-literature
| S-EPMC9546905 | biostudies-literature
| S-EPMC8958283 | biostudies-literature