Identification and In Silico Prediction of Anticoagulant Peptides from the Enzymatic Hydrolysates of Mytilus edulis Proteins.
Ontology highlight
ABSTRACT: Mytilus edulis is a typical marine bivalve mollusk. Many kinds of bioactive components with nutritional and pharmaceutical activities in Mytilus edulis were reported. In this study, eight different parts of Mytilus edulis tissues, i.e., the foot, byssus, pedal retractor muscle, mantle, gill, adductor muscle, viscera, and other parts, were separated and the proteins from these tissues were prepared. A total of 277 unique peptides from the hydrolysates of different proteins were identified by UPLC-Q-TOF-MS/MS, and the molecular weight distribution of the peptides in different tissues was investigated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The bioactivity of the peptides was predicted through the Peptide Ranker database and molecular docking. Moreover, the peptides from the adductor muscle were chosen to do the active validation of anticoagulant activity. The active mechanism of three peptides from the adductor muscle, VQQELEDAEERADSAEGSLQK, RMEADIAAMQSDLDDALNGQR, and AAFLLGVNSNDLLK, were analyzed by Discovery Studio 2017, which also explained the anticoagulant activity of the hydrolysates of proteins from adductor muscle. This study optimized a screening and identification method of bioactive peptides from enzymatic hydrolysates of different tissues in Mytilus edulis.
SUBMITTER: Qiao M
PROVIDER: S-EPMC6073223 | biostudies-literature | 2018 Jul
REPOSITORIES: biostudies-literature
ACCESS DATA