Unknown

Dataset Information

0

Overcoming Limitations Inherent in Sulfamidase to Improve Mucopolysaccharidosis IIIA Gene Therapy.


ABSTRACT: Sulfamidase (SGSH) deficiency causes mucopolysaccharidosis type IIIA (MPS IIIA), a lysosomal storage disease (LSD) that affects the CNS. In earlier work in LSD mice and dog models, we exploited the utility of adeno-associated viruses (AAVs) to transduce brain ventricular lining cells (ependyma) for secretion of lysosomal hydrolases into the cerebrospinal fluid (CSF), with subsequent distribution of enzyme throughout the brain resulting in improved cognition and extending lifespan. A critical feature of this approach is efficient secretion of the expressed enzyme from transduced cells, for delivery by CSF to nontransduced cells. Surprisingly, we found that SGSH was poorly secreted from cells, resulting in retention of the expressed product. Using site-directed mutagenesis of native SGSH, we identified an improved secretion variant that also displayed enhanced uptake properties that were mannose-6-phosphate receptor independent. In studies in MPS IIIA-deficient mice, ependymal transduction with AAVs expressing variant SGSH improved spatial learning and reduced memory deficits, substrate accumulation, and astrogliosis. Secondary lysosomal enzyme elevations in the CSF and brain parenchyma were also resolved. In contrast, ependymal transduction with AAVs expressing wild-type SGSH had significantly lower CSF SGSH levels and limited impacts on behavior. These results demonstrate the utility of a previously undescribed SGSH variant for improved MPS IIIA brain gene therapy.

SUBMITTER: Chen Y 

PROVIDER: S-EPMC6079371 | biostudies-literature | 2018 Apr

REPOSITORIES: biostudies-literature

altmetric image

Publications

Overcoming Limitations Inherent in Sulfamidase to Improve Mucopolysaccharidosis IIIA Gene Therapy.

Chen Yonghong Y   Zheng Shujuan S   Tecedor Luis L   Davidson Beverly L BL  

Molecular therapy : the journal of the American Society of Gene Therapy 20180131 4


Sulfamidase (SGSH) deficiency causes mucopolysaccharidosis type IIIA (MPS IIIA), a lysosomal storage disease (LSD) that affects the CNS. In earlier work in LSD mice and dog models, we exploited the utility of adeno-associated viruses (AAVs) to transduce brain ventricular lining cells (ependyma) for secretion of lysosomal hydrolases into the cerebrospinal fluid (CSF), with subsequent distribution of enzyme throughout the brain resulting in improved cognition and extending lifespan. A critical fea  ...[more]

Similar Datasets

| S-EPMC4014121 | biostudies-literature
| S-EPMC6881609 | biostudies-literature
| S-EPMC3278559 | biostudies-literature
| S-EPMC10270249 | biostudies-literature
| S-EPMC3726158 | biostudies-literature
| S-EPMC6737345 | biostudies-literature
| S-EPMC7059006 | biostudies-literature
| S-EPMC3421066 | biostudies-literature
| S-SCDT-EMM-2019-11185 | biostudies-other
| S-EPMC6323024 | biostudies-literature