Unknown

Dataset Information

0

Human adipose-derived mesenchymal stem cells promote recovery of injured HepG2 cell line and show sign of early hepatogenic differentiation.


ABSTRACT: Currently, orthotopic liver transplantation is the gold standard therapy for liver failure. However, it is limited by the insufficient organ donor and risk of immune rejection. Stem cell therapy is a promising alternative treatment for liver failure. One of the most ideal sources of stem cells for regenerative medicine is adipose-derived stem cells (ADSCs). In this study, primary ADSCs seeded on cell culture insert were indirectly co-cultured with injured HepG2 to elucidate the role of ADSCs in promoting the recovery of injured HepG2 in non-contact manner. HepG2 recovery was determined by the surface area covered by cells and growth factor concentration was measured to identify the factors involved in regeneration. Besides, HepG2 were collected for q-PCR analysis of injury, hepatocyte functional and regenerative markers expression. For the ADSCs, expression of hepatogenic differentiation genes was analyzed. Results showed that non-contact co-culture with ADSCs helped the recovery of injured HepG2. ELISA quantification revealed that ADSCs secreted higher amount of HGF and VEGF to help the recovery of injured HepG2. Furthermore, HepG2 co-cultured with ADSCs expressed significantly lower injury markers as well as significantly higher regenerative and functional markers compared to the control HepG2. ADSCs co-cultured with injured HepG2 expressed significantly higher hepatic related genes compared to the control ADSCs. In conclusion, ADSCs promote recovery of injured HepG2 via secretion of HGF and VEGF. In addition, co-cultured ADSCs showed early sign of hepatogenic differentiation in response to the factors released or secreted by the injured HepG2.

SUBMITTER: Liau LL 

PROVIDER: S-EPMC6081923 | biostudies-literature | 2018 Aug

REPOSITORIES: biostudies-literature

altmetric image

Publications

Human adipose-derived mesenchymal stem cells promote recovery of injured HepG2 cell line and show sign of early hepatogenic differentiation.

Liau Ling Ling LL   Makpol Suzana S   Azurah Abdul Ghani Nur AGN   Chua Kien Hui KH  

Cytotechnology 20180316 4


Currently, orthotopic liver transplantation is the gold standard therapy for liver failure. However, it is limited by the insufficient organ donor and risk of immune rejection. Stem cell therapy is a promising alternative treatment for liver failure. One of the most ideal sources of stem cells for regenerative medicine is adipose-derived stem cells (ADSCs). In this study, primary ADSCs seeded on cell culture insert were indirectly co-cultured with injured HepG2 to elucidate the role of ADSCs in  ...[more]

Similar Datasets

| S-EPMC4022508 | biostudies-other
| S-EPMC4376765 | biostudies-literature
| S-EPMC3731682 | biostudies-literature
| S-EPMC5560703 | biostudies-other
| S-EPMC5511371 | biostudies-literature
| S-EPMC7803698 | biostudies-literature
| S-EPMC1216836 | biostudies-literature
| S-EPMC7450089 | biostudies-literature
| S-EPMC7348751 | biostudies-literature
| S-EPMC6325075 | biostudies-other