Unknown

Dataset Information

0

More than the sum of the parts: annual partitioning within spatial guilds underpins community regulation.


ABSTRACT: To withstand the pressures of a rapidly changing world, resilient ecosystems should exhibit compensatory dynamics, including uncorrelated temporal shifts in population sizes. The observation that diversity is maintained through time in many systems is evidence that communities are indeed regulated and stabilized, yet empirical observations suggest that positive covariance in species abundances is widespread. This paradox could be resolved if communities are composed of a number of ecologically relevant sub-units in which the members compete for resources, but whose abundances fluctuate independently. Such modular organization could explain community regulation, even when the community as a whole appears synchronized. To test this hypothesis, we quantified temporal synchronicity in annual population abundances within spatial guilds in an estuarine fish assemblage that has been monitored for 36 years. We detected independent fluctuations in annual abundances within guilds. By contrast, the assemblage as a whole exhibited temporal synchronicity-an outcome linked to the dynamics of guild dominants, which were synchronized with each other. These findings underline the importance of modularity in explaining community regulation and highlight the need to protect assemblage composition and structure as well as species richness.

SUBMITTER: Magurran AE 

PROVIDER: S-EPMC6083250 | biostudies-literature | 2018 Jul

REPOSITORIES: biostudies-literature

altmetric image

Publications

More than the sum of the parts: annual partitioning within spatial guilds underpins community regulation.

Magurran A E AE   Henderson P A PA  

Proceedings. Biological sciences 20180718 1883


To withstand the pressures of a rapidly changing world, resilient ecosystems should exhibit compensatory dynamics, including uncorrelated temporal shifts in population sizes. The observation that diversity is maintained through time in many systems is evidence that communities are indeed regulated and stabilized, yet empirical observations suggest that positive covariance in species abundances is widespread. This paradox could be resolved if communities are composed of a number of ecologically r  ...[more]

Similar Datasets

| S-EPMC8549862 | biostudies-literature
| S-EPMC2799696 | biostudies-literature
| S-EPMC5963823 | biostudies-literature
| S-EPMC8443165 | biostudies-literature
| S-EPMC5990786 | biostudies-literature
| S-EPMC6531341 | biostudies-literature
| S-EPMC6338383 | biostudies-literature
| S-EPMC4213323 | biostudies-literature
| S-EPMC4129382 | biostudies-other
| S-EPMC7594621 | biostudies-literature