Unknown

Dataset Information

0

4? plan optimization for cortical-sparing brain radiotherapy.


ABSTRACT: BACKGROUND AND PURPOSE:Incidental irradiation of normal brain tissue during radiotherapy is linked to cognitive decline, and may be mediated by damage to healthy cortex. Non-coplanar techniques may be used for cortical sparing. We compared normal brain sparing and probability of cortical atrophy using 4? radiation therapy planning vs. standard fixed gantry intensity-modulated radiotherapy (IMRT). MATERIAL AND METHODS:Plans from previously irradiated brain tumor patients ("original IMRT", n?=?13) were re-planned to spare cortex using both 4? optimization ("4?") and IMRT optimization ("optimized IMRT"). Homogeneity index (HI), gradient measure, doses to cortex and white matter (excluding tumor), brainstem, optics, and hippocampus were compared with matching PTV coverage. Probability of three grades of post-treatment cortical atrophy was modeled based on previously established dose response curves. RESULTS:With matching PTV coverage, 4? significantly improved HI by 27% (p?=?0.005) and gradient measure by 8% (p?=?0.001) compared with optimized IMRT. 4? optimization reduced mean and equivalent uniform doses (EUD) to all standard OARs, with 14-15% reduction in hippocampal EUD (p???0.003) compared with the other two plans. 4? significantly reduced dose to fractional cortical volumes (V50, V40 and V30) compared with the original IMRT plans, and reduced cortical V30 by 7% (p?=?0.008) compared with optimized IMRT. White matter EUD, mean dose, and fractional volumes V50, V40 and V30 were also significantly lower with 4? (p???0.001). With 4?, probability of grade 1, 2 and 3 cortical atrophy decreased by 12%, 21% and 26% compared with original IMRT and by 8%, 14% and 3% compared with optimized IMRT, respectively (p???0.001). CONCLUSIONS:4? radiotherapy significantly improved cortical sparing and reduced doses to standard brain OARs, white matter, and the hippocampus. This was achieved with superior PTV dose homogeneity. Such sparing could reduce the probability of cortical atrophy that may lead to cognitive decline.

SUBMITTER: Murzin VL 

PROVIDER: S-EPMC6084493 | biostudies-literature | 2018 Apr

REPOSITORIES: biostudies-literature

altmetric image

Publications

4π plan optimization for cortical-sparing brain radiotherapy.

Murzin Vyacheslav L VL   Woods Kaley K   Moiseenko Vitali V   Karunamuni Roshan R   Tringale Kathryn R KR   Seibert Tyler M TM   Connor Michael J MJ   Simpson Daniel R DR   Sheng Ke K   Hattangadi-Gluth Jona A JA  

Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology 20180305 1


<h4>Background and purpose</h4>Incidental irradiation of normal brain tissue during radiotherapy is linked to cognitive decline, and may be mediated by damage to healthy cortex. Non-coplanar techniques may be used for cortical sparing. We compared normal brain sparing and probability of cortical atrophy using 4π radiation therapy planning vs. standard fixed gantry intensity-modulated radiotherapy (IMRT).<h4>Material and methods</h4>Plans from previously irradiated brain tumor patients ("original  ...[more]

Similar Datasets

| S-EPMC8504207 | biostudies-literature
| S-EPMC10827578 | biostudies-literature
| S-EPMC5679153 | biostudies-literature
| S-EPMC8254191 | biostudies-literature
| S-EPMC9450152 | biostudies-literature
| S-EPMC8463591 | biostudies-literature
| S-EPMC10562038 | biostudies-literature
| S-EPMC8058021 | biostudies-literature
| S-EPMC8504592 | biostudies-literature
| S-EPMC9312994 | biostudies-literature