The pervasive effects of lighting environments on sensory drive in bluefin killifish: an investigation into male/male competition, female choice, and predation.
Ontology highlight
ABSTRACT: Sensory drive predicts that the conditions under which signaling takes place have large effects on signals, sensory systems, and behavior. The coupling of an ecological genetics approach with sensory drive has been fruitful. An ecological genetics approach compares populations that experience different environments and asks whether population differences are adaptive and are the result of genetic and/or environmental variation. The multi-faceted effects of signaling environments are well-exemplified by the bluefin killifish. In this system, males with blue anal fins are abundant in tannin-stained swamps that lack UV/blue light but are absent in clear springs where UV/blue light is abundant. Past work indicates that lighting environments shape genetic and environmental variation in color patterns, visual systems, and behavior. Less is known about the selective forces creating the across population correlations between UV/blue light and the abundance of blue males. Here, we present three new experiments that investigate the roles of lighting environments on male competition, female mate choice, and predation. We found strong effects of lighting environments on male competition where blue males were more likely to emerge as dominant in tea-stained water than in clear water. Our preliminary study on predation indicated that blue males may be less susceptible to predation in tea-stained water than in clear water. However, there was little evidence for female preferences favoring blue males. The resulting pattern is one where the effects of lighting environments on genetic variation and phenotypic plasticity match the direction of selection and favor the expression of blue males in swamps.
SUBMITTER: Mitchem LD
PROVIDER: S-EPMC6084612 | biostudies-literature | 2018 Aug
REPOSITORIES: biostudies-literature
ACCESS DATA