Unknown

Dataset Information

0

Hydrogenation of carbon dioxide to methanol using a homogeneous ruthenium-Triphos catalyst: from mechanistic investigations to multiphase catalysis.


ABSTRACT: The hydrogenation of CO2 to methanol can be achieved using a single molecular organometallic catalyst. Whereas homogeneous catalysts were previously believed to allow the hydrogenation only via formate esters as stable intermediates, the present mechanistic study demonstrates that the multistep transformation can occur directly on the Ru-Triphos (Triphos = 1,1,1-tris(diphenylphosphinomethyl)ethane) centre. The cationic formate complex [(Triphos)Ru(?2-O2CH)(S)]+ (S = solvent) was identified as the key intermediate, leading to the synthesis of the analogous acetate complex as a robust and stable precursor for the catalytic transformation. A detailed mechanistic study using DFT calculations shows that a sequential series of hydride transfer and protonolysis steps can account for the transformation of CO2via formate/formic acid to hydroxymethanolate/formaldehyde and finally methanolate/methanol within the coordination sphere of a single Ru-Triphos-fragment. All experimental results of the systematic parameter optimisation are fully consistent with this mechanistic picture. Based on these findings, a biphasic system consisting of H2O and 2-MTHF was developed, in which the active cationic Ru-complex resides in the organic phase for recycling and methanol is extracted with the aqueous phase.

SUBMITTER: Wesselbaum S 

PROVIDER: S-EPMC6085670 | biostudies-literature | 2015 Jan

REPOSITORIES: biostudies-literature

altmetric image

Publications

Hydrogenation of carbon dioxide to methanol using a homogeneous ruthenium-Triphos catalyst: from mechanistic investigations to multiphase catalysis.

Wesselbaum Sebastian S   Moha Verena V   Meuresch Markus M   Brosinski Sandra S   Thenert Katharina M KM   Kothe Jens J   Stein Thorsten Vom TV   Englert Ulli U   Hölscher Markus M   Klankermayer Jürgen J   Leitner Walter W  

Chemical science 20140827 1


The hydrogenation of CO<sub>2</sub> to methanol can be achieved using a single molecular organometallic catalyst. Whereas homogeneous catalysts were previously believed to allow the hydrogenation only <i>via</i> formate esters as stable intermediates, the present mechanistic study demonstrates that the multistep transformation can occur directly on the Ru-Triphos (Triphos = 1,1,1-tris(diphenylphosphinomethyl)ethane) centre. The cationic formate complex [(Triphos)Ru(η<sup>2</sup>-O<sub>2</sub>CH)  ...[more]

Similar Datasets

| S-EPMC7976608 | biostudies-literature
| S-EPMC9100671 | biostudies-literature
| S-EPMC5458915 | biostudies-other
| S-EPMC4213406 | biostudies-other
| S-EPMC7735017 | biostudies-literature
| S-EPMC7229192 | biostudies-literature
| S-EPMC4560812 | biostudies-literature
| S-EPMC9291086 | biostudies-literature
| S-EPMC9051381 | biostudies-literature