Unknown

Dataset Information

0

Bacterial diversity and production of sulfide in microcosms containing uncompacted bentonites.


ABSTRACT: Aims:This study examined the diversity and sulfide-producing activity of microorganisms in microcosms containing commercial clay products (e.g., MX-80, Canaprill and National Standard) similar to materials which are currently considered for use in the design specifications for deep geologic repositories (DGR) for spent nuclear fuel. Methods and results:In anoxic microcosms incubated for minimum of 60 days with 10 g l-1 NaCl, sulfide production varied with temperature, electron donor and bentonite type. Maximum specific sulfide production rates of 0.189 d-1, 0.549 d-1 and 0.157 d-1 occurred in lactate-fed MX-80, Canaprill and National Standard microcosms, respectively. In microcosms with 50 g l-1 NaCl, sulfide production was inhibited. Denaturing gradient gel electrophoresis (DGGE) profiling of microcosms revealed the presence of bacterial classes Clostridia, Bacilli, Gammaproteobacteria, Deltaproteobacteria, Actinobacteria, Sphingobacteriia and Erysipelotrichia. Spore-forming and non-spore-forming bacteria were confirmed in microcosms using high-throughput 16S rRNA gene sequencing. Sulfate-reducing bacteria of the genus Desulfosporosinus predominated in MX-80 microcosms; whereas, Desulfotomaculum and Desulfovibrio genera contributed to sulfate-reduction in National Standard and Canaprill microcosms. Conclusions:Commercial clays microcosms harbour a sparse bacterial population dominated by spore-forming microorganisms. Detected sulfate- and sulfur-reducing bacteria presumably contributed to sulfide accumulation in the different microcosm systems. Significance and impact of study:The use of carbon-supplemented, clay-in-water microcosms offered insights into the bacterial diversity present in as-received clays, along with the types of metabolic and sulfidogenic reactions that might occur in regions of a DGR (e.g., interfaces between the bulk clay and host rock, cracks, fissures, etc.) that fail to attain target parameters necessary to inhibit microbial growth and activity.

SUBMITTER: Grigoryan AA 

PROVIDER: S-EPMC6090518 | biostudies-literature | 2018 Aug

REPOSITORIES: biostudies-literature

altmetric image

Publications

Bacterial diversity and production of sulfide in microcosms containing uncompacted bentonites.

Grigoryan Alexander A AA   Jalique Daphne R DR   Medihala Prabhakara P   Stroes-Gascoyne Simcha S   Wolfaardt Gideon M GM   McKelvie Jennifer J   Korber Darren R DR  

Heliyon 20180809 8


<h4>Aims</h4>This study examined the diversity and sulfide-producing activity of microorganisms in microcosms containing commercial clay products (<i>e.g.</i>, MX-80, Canaprill and National Standard) similar to materials which are currently considered for use in the design specifications for deep geologic repositories (DGR) for spent nuclear fuel.<h4>Methods and results</h4>In anoxic microcosms incubated for minimum of 60 days with 10 g l<sup>-1</sup> NaCl, sulfide production varied with tempera  ...[more]

Similar Datasets

| S-EPMC8524152 | biostudies-literature
| S-EPMC3811393 | biostudies-literature
| S-EPMC5094703 | biostudies-literature
| S-EPMC194924 | biostudies-literature
| S-EPMC3820650 | biostudies-literature
| S-EPMC3262162 | biostudies-literature
| S-EPMC4789748 | biostudies-literature
| S-EPMC4427283 | biostudies-literature
| S-EPMC3461140 | biostudies-literature
| S-EPMC134433 | biostudies-literature