Early erratic flight response of the lucerne moth to the quiet echolocation calls of distant bats.
Ontology highlight
ABSTRACT: Nocturnal insects have evolved ultrasound-sensitive hearing in response to predation pressures from echolocating insectivorous bats. Flying tympanate moths take various evasive actions when they detect bat cries, including turning away, performing a steering/zigzagging flight and ceasing flight. In general, infrequent ultrasonic pulses with low sound intensities that are emitted by distant bats evoke slight turns, whereas frequent and loud ultrasonic pulses of nearby bats evoke erratic or rapid unpredictable changes in the flight path of a moth. Flight cessation, which is a freezing response that causes the moth to passively dive (drop) to the ground, is considered the ultimate last-ditch evasive behaviour against approaching bats where there is a high predation threat. Here, we found that the crambid moth Nomophila nearctica never performed passive dives in response to frequent and loud ultrasonic pulses of >60 dB sound pressure level (SPL) that simulated the attacking echolocation call sequence of the predominant sympatric insectivorous bat Eptesicus fuscus, but rather turned away or flew erratically, regardless of the temporal structure of the stimulus. Consequently, N. nearctica is likely to survive predation by bats by taking early evasive action even when it detects the echolocation calls of sympatric bats hunting other insects at a distance. Since aerially hawking bats can track and catch erratically flying moths after targeting their prey, this early escape strategy may be common among night-flying tympanate insects.
SUBMITTER: Nakano R
PROVIDER: S-EPMC6101402 | biostudies-literature | 2018
REPOSITORIES: biostudies-literature
ACCESS DATA