Project description:BackgroundCognitive deficits form core features in schizophrenia. Several studies have shown improvements in prefrontal cognitive function by ? 2 -agonists in schizophrenia. In the present study, it was investigated whether clonidine (an ? 2 -adrenoceptor agonist) could normalize sensorimotor gating deficits in schizophrenia.MethodsIn a double blind, placebo controlled, randomized, yet balanced, cross-over experiment, 20 male schizophrenia patients on stable medication were assessed in an auditory prepulse inhibition (PPI), sensitization, and habituation of the startle reflex paradigm on 5 occasions: once after oral administration of placebo and after a single dose of 25, 50, 75, and 150 µg of clonidine. Their results were compared with 20 age- and gender-matched healthy volunteers, who received no treatment.ResultsIn the placebo treatment, patients showed deficient PPI and sensitization, yet normal habituation compared with the controls. Except the highest dose, all dosages of clonidine significantly increased percentage PPI in the patients compared with placebo, to such levels that it no longer differed significantly from the healthy controls. However, none of the dosages increased sensitization or influenced habituation.ConclusionsThis is the first study to show that even a single low dose of clonidine added to the medical treatment of patients with schizophrenia who are clinically stable on their antipsychotic medication not only significantly ameliorates their PPI deficits, but also normalizes them. The results have a potentially high clinical relevance for the medical treatment of schizophrenia.
Project description:Glutamate dysregulation is known to contribute to many psychiatric disorders including schizophrenia. Aberrant cortico-striatal activity and therefore glutamate levels might be relevant to this disease characterized by reduced prepulse inhibition (PPI), however, the molecular and behavioral mechanism of the pathophysiology of schizophrenia remains unclear. The focus of this study was to contribute to the current understanding of the glutamate and neurogranin (Ng) pathway, in relation to the cortico-striatal pathology of schizophrenia using a mouse model. A variant of the Ng gene has been detected in people with schizophrenia, implicating maladaptation of cortical glutamate signaling and sensorimotor gating. To test Ng-mediated PPI regulation in the mouse model, we utilized Ng null mice, viral-mediated Ng expression, and genetics approaches. Our results demonstrate that lack of Ng in mice decreases PPI. Ng over-expression in the prefrontal cortex (PFC) increases PPI, while Ng expression in either the nucleus accumbens (NAc) or hippocampus induces no change in PPI. Using optogenetics and chemogenetics, we identified that cortico-striatal activation is involved in PPI regulation. Finally, pharmacological regulation of Ng using glutamate receptor inhibitors demonstrated altered PPI between genotypes. In this study, we have investigated the impact of Ng expression on sensorimotor gating. This study contributes to a better understanding of the glutamatergic theory of schizophrenia, opening novel therapeutic avenues that may lead to glutamatergic treatments to ameliorate the symptoms of schizophrenia.
Project description:Prepulse inhibition (PPI) of startle is an operational measure of sensorimotor gating that is often impaired in patients with schizophrenia. Despite the large number of studies, there is considerable variation in PPI outcomes reported. We conducted a systematic review and meta-analysis investigating PPI impairment in patients with schizophrenia compared with healthy control subjects, and examined possible explanations for the variation in results between studies. Major databases were screened for observational studies comparing healthy subjects and patients with schizophrenia for the prepulse and pulse intervals of 60 and 120 ms as primary outcomes, ie, PPI-60 and PPI-120. Standardized mean difference (SMD) and 95% confidence intervals (CI) were extracted and pooled using random effects models. We then estimated the mean effect size of these measures with random effects meta-analyses and evaluated potential PPI heterogeneity moderators, using sensitivity analysis and meta-regressions. Sixty-seven primary studies were identified, with 3685 healthy and 4290 patients with schizophrenia. The schizophrenia group showed reduction in sensorimotor gating for both PPI-60 (SMD = -0.50, 95% CI = [-0.61, -0.39]) and PPI-120 (SMD = -0.44, 95% CI = [-0.54, -0.33]). The sensitivity and meta-regression analysis showed that sample size, gender proportion, imbalance for gender, source of control group, and study continent were sources of heterogeneity (P < .05) for both PPI-60 and PPI-120 outcomes. Our findings confirm a global sensorimotor gating deficit in schizophrenia patients, with overall moderate effect size for PPI-60 and PPI-120. Methodological consistency should decrease the high level of heterogeneity of PPI results between studies.
Project description:BackgroundEvidence from anatomical, pharmacological, and genetic studies supports a role for the neuropeptide melanin concentrating hormone system in modulating emotional and cognitive functions. Genome-wide association studies revealed a potential association between the melanin concentrating hormone receptor (MCHR1) gene locus and schizophrenia, and the largest genome-wide association study conducted to date shows a credible genome-wide association.MethodsWe analyzed MCHR1 and pro-melanin concentrating hormone RNA-Seq expression in the prefrontal cortex in schizophrenia patients and healthy controls. Disruptions in the melanin concentrating hormone system were modeled in the mouse brain by germline deletion of MCHR1 and by conditional ablation of melanin concentrating hormone expressing neurons using a Cre-inducible diphtheria toxin system.ResultsMCHR1 expression is decreased in the prefrontal cortex of schizophrenia samples (false discovery rate (FDR) P < .05, CommonMind and PsychEncode combined datasets, n = 901) while pro-melanin concentrating hormone is below the detection threshold. MCHR1 expression decreased with aging (P = 6.6E-57) in human dorsolateral prefrontal cortex. The deletion of MCHR1 was found to lead to behavioral abnormalities mimicking schizophrenia-like phenotypes: hyperactivity, increased stereotypic and repetitive behavior, social impairment, impaired sensorimotor gating, and disrupted cognitive functions. Conditional ablation of pro-melanin concentrating hormone neurons increased repetitive behavior and produced a deficit in sensorimotor gating.ConclusionsOur study indicates that early disruption of the melanin concentrating hormone system interferes with neurodevelopmental processes, which may contribute to the pathogenesis of schizophrenia. Further neurobiological research on the developmental timing and circuits that are affected by melanin concentrating hormone may lead to a therapeutic target for early prevention of schizophrenia.
Project description:Delusions are cardinal positive symptoms in schizophrenia; however, the neural substrates of delusions remain unknown. In the present study, we investigated the neural correlates of delusions in schizophrenia using multi-modal magnetic resonance imaging (MRI) techniques. Diffusion, structural and perfusion MRIs were performed in 19 schizophrenia patients with severe delusions, 30 patients without delusions and 30 healthy controls. Fractional anisotropy (FA), gray matter volume (GMV) and cerebral blood flow (CBF) were voxel-wisely compared among the three groups. Although patients without delusions exhibited decreased FA in white matter regions and decreased GMV in gray matter regions relative to controls, patients with severe delusions demonstrated comparable FA in all of these white matter regions and similar GMV in most of these gray matter regions. Both patient subgroups had less GMV in the amygdala and anterior cingulate cortex than controls. Although two patient subgroups showed consistent CBF changes relative to controls, only CBF in the anterior cingulate cortex was lower in patients with severe delusions than in patients without delusions. These findings suggest that schizophrenia patients with severe delusions have relatively normal structural integrity. Importantly, the excessively reduced perfusion in the anterior cingulate cortex may be associated with the development of delusions in schizophrenia.
Project description:Attentional gating deficits, commonly measured by prepulse inhibition (PPI) of the acoustic startle response (ASR), have been established as an endophenotype of schizophrenia. Prepulse inhibition is heritable and has been associated with polymorphisms in serotonin and dopamine system genes. Prepulse inhibition can be enhanced by nicotine, and therefore it has been proposed that schizophrenia patients smoke to ameliorate their early attentional deficits. The PPI-enhancing effects of nicotine in rodents are strain dependent, suggesting a genetic contribution to PPI within the nicotinic acetylcholine receptor (nAChR) system. Recent human genetic studies also imply that tobacco dependence is affected by polymorphisms in the alpha3/alpha5 subunits of the nAChR (CHRNA3/CHRNA5) gene cluster. We, therefore, investigated the impact of two common CHRNA3 polymorphisms (rs1051730/rs1317286) on PPI, startle reactivity, and habituation of the ASR in two independent samples of 107 healthy British volunteers and 73 schizophrenia patients hailing from Germany. In both samples, PPI was influenced by both CHRNA3 polymorphisms (combined p-value=0.0027), which were strongly linked. Moreover, CHRNA3 genotype was associated with chronicity, treatment, and negative symptoms in the schizophrenia sample. These results suggest that sensorimotor gating is influenced by variations of the CHRNA3 gene, which might also have an impact on the course and severity of schizophrenia.
Project description:Compared to socially housed (SH) rats, adult isolation-reared (IR) rats exhibit phenotypes relevant to schizophrenia (SZ), including reduced prepulse inhibition (PPI) of startle. PPI is normally regulated by the medial prefrontal cortex (mPFC) and nucleus accumbens (NAC). We assessed PPI, auditory-evoked local field potentials (LFPs) and expression of seven PPI- and SZ-related genes in the mPFC and NAC, in IR and SH rats. Buffalo (BUF) rats were raised in same-sex groups of 2-3 (SH) or in isolation (IR). PPI was measured early (d53) and later in adulthood (d74); LFPs were measured approximately on d66. Brains were processed for RT-PCR measures of mPFC and NAC expression of Comt, Erbb4, Grid2, Ncam1, Slc1a2, Nrg1 and Reln. Male IR rats exhibited PPI deficits, most pronounced at d53; male and female IR rats had significantly elevated startle magnitude on both test days. Gene expression levels were not significantly altered by IR. PPI levels (d53) were positively correlated with mPFC expression of several genes, and negatively correlated with NAC expression of several genes, in male IR but not SH rats. Late (P90) LFP amplitudes correlated significantly with expression levels of 6/7 mPFC genes in male rats, independent of rearing. After IR that disrupts early adult PPI in male BUF rats, expression levels of PPI- and SZ-associated genes in the mPFC correlate positively with PPI, and levels in the NAC correlate negatively with PPI. These results support the model that specific gene-behavior relationships moderate the impact of early-life experience on SZ-linked behavioral and neurophysiological markers.
Project description:After decades of research aimed at elucidating the pathophysiology and etiology of schizophrenia, it has become increasingly apparent that it is an illness knowing few boundaries. Psychopathological manifestations extend across several domains, impacting multiple facets of real-world functioning for the affected individual. Even within one such domain, arguably the most enduring, difficult to treat, and devastating to long-term functioning-executive impairment-there are not only a host of disrupted component processes, but also a complex underlying dysfunctional neural architecture. Further, just as implicated brain structures (eg, dorsolateral prefrontal cortex) through postmortem and neuroimaging techniques continue to show alterations in multiple, interacting signaling pathways, so too does evolving understanding of genetic risk factors suggest multiple molecular entry points to illness liability. With this expansive network of interactions in mind, the present chapter takes a systems-level approach to executive dysfunction in schizophrenia, by identifying key regions both within and outside of the frontal lobes that show changes in schizophrenia and are important in cognitive control neural circuitry, summarizing current knowledge of their relevant functional interactions, and reviewing emerging links between schizophrenia risk genetics and characteristic executive circuit aberrancies observed with neuroimaging methods.
Project description:Smooth pursuit deficits are an intermediate phenotype for schizophrenia that may result from disturbances in visual motion perception, sensorimotor transformation, predictive mechanisms, or alterations in basic oculomotor control. Which of these components are the primary causes of smooth pursuit impairments and whether they are impaired similarly across psychotic disorders remain to be established.First-episode psychotic patients with bipolar disorder (n = 34), unipolar depression (n = 24), or schizophrenia (n = 77) and matched healthy participants (n = 130) performed three smooth pursuit tasks designed to evaluate different components of pursuit tracking.On ramp tasks, maintenance pursuit velocity was reduced in all three patients groups with psychotic bipolar patients exhibiting the most severe impairments. Open loop pursuit velocity was reduced in psychotic bipolar and schizophrenia patients. Motion perception during pursuit initiation, as indicated by the accuracy of saccades to moving targets, was not impaired in any patient group. Analyses in 138 participants followed for 6 weeks, during which patients were treated and psychotic symptom severity decreased, and no significant change in performance in any group was revealed.Sensorimotor transformation deficits in all patient groups suggest a common alteration in frontostriatal networks that dynamically regulate gain control of pursuit responses using sensory input and feedback about performance. Predictive mechanisms appear to be sufficiently intact to compensate for this deficit across psychotic disorders. The absence of significant changes after acute treatment and symptom reduction suggests that these deficits appear to be stable over time.
Project description:We characterized the in vivo and in vitro consequences of reduced expression of Slc1a1 in mice. Heterozygous (HET) Slc1a1+/- mice, which model the hemi-deletion we found in human subjects with schizophrenia, were examined in a series of behavioral, anatomical and biochemical assays. Knockout (KO) mice were also included in the behavioral studies for comparative purposes. Both HET and KO mice exhibited evidence of increased anxiety-like behavior, impaired working memory, decreased exploratory activity and impaired sensorimotor gating, but no changes in overall locomotor activity compared to wildtype (WT) mice. The magnitude of changes was approximately equivalent in the HET and KO mice suggesting a dominant effect of the haploinsufficiency. Whole transcriptome RNA-Seq analysis detected expression changes of genes and pathways involved in cytokine signaling and synaptic functions in both brain and blood of the HET mice compared to WT mice.