Unknown

Dataset Information

0

Complement inhibition ameliorates blast-induced acute lung injury in rats: Potential role of complement in intracellular HMGB1-mediated inflammation.


ABSTRACT: BACKGROUND AND OBJECTIVE:Complement activation as an early and important inflammatory process contributes to multiple organ dysfunction after trauma. We have recently shown that complement inhibition by decay-accelerating factor (DAF) protects brain from blast-overpressure (BOP)-induced damage. This study was conducted to determine the effect of DAF on acute lung injury induced by BOP exposure and to elucidate its possible mechanisms of action. METHODS:Anesthetized adult male Sprague-Daley rats were exposed to BOP (120 kPa) from a compressed air-driven shock tube. Rats were randomly assigned to three experimental groups: 1) Control (no BOP and no DAF treatment), 2) BOP (120 kPa BOP exposure), and 3) BOP followed by treatment with rhDAF (500?g/kg, i.v) at 30 minutes after blast. After a recovery period of 3, 24, or 48 hours, animals were euthanized followed by the collection of blood and tissues at each time point. Samples were subjected to the assessment of cytokines and histopathology as well as for the interaction of high-mobility-group box 1 (HMGB1) protein, NF-?B, receptor for advanced glycation end products (RAGE), C3a, and C3aR. RESULTS:BOP exposure significantly increased in the production of systemic pro- and anti-inflammatory cytokines, and obvious pathological changes as characterized by pulmonary edema, inflammation, endothelial damage and hemorrhage in the lungs. These alterations were ameliorated by early administration of rhDAF. The rhDAF treatment not only significantly reduced the expression levels of HMGB1, RAGE, NF-?B, C3a, and C3aR, but also reversed the interaction of C3a-C3aR and nuclear translocation of HMGB1 in the lungs. CONCLUSIONS:Our findings indicate that early administration of DAF efficiently inhibits systemic and local inflammation, and mitigates blast-induced lung injury. The underlying mechanism might be attributed to its potential modulation of C3a-C3aR-HMGB1-transcriptional factor axis. Therefore, complement and/or HMGB1 may be potential therapeutic targets in amelioration of acute lung injury after blast injury.

SUBMITTER: Li Y 

PROVIDER: S-EPMC6105023 | biostudies-literature | 2018

REPOSITORIES: biostudies-literature

altmetric image

Publications

Complement inhibition ameliorates blast-induced acute lung injury in rats: Potential role of complement in intracellular HMGB1-mediated inflammation.

Li Yansong Y   Yang Zhangsheng Z   Chavko Mikulas M   Liu Bin B   Aderemi Olawale A OA   Simovic Milomir O MO   Dubick Michael A MA   Cancio Leopoldo C LC  

PloS one 20180822 8


<h4>Background and objective</h4>Complement activation as an early and important inflammatory process contributes to multiple organ dysfunction after trauma. We have recently shown that complement inhibition by decay-accelerating factor (DAF) protects brain from blast-overpressure (BOP)-induced damage. This study was conducted to determine the effect of DAF on acute lung injury induced by BOP exposure and to elucidate its possible mechanisms of action.<h4>Methods</h4>Anesthetized adult male Spra  ...[more]

Similar Datasets

| S-EPMC3578018 | biostudies-literature
| S-EPMC6174571 | biostudies-literature
| S-EPMC6402207 | biostudies-literature
| S-EPMC5818890 | biostudies-literature
| S-EPMC5802901 | biostudies-literature
| S-EPMC7913048 | biostudies-literature
| S-EPMC6072368 | biostudies-literature
| S-EPMC8437127 | biostudies-literature
| S-EPMC7269334 | biostudies-literature
| S-EPMC4963894 | biostudies-literature