Ontology highlight
ABSTRACT: Abstract
Surface chemistry of regenerated all-wood-biopolymer fibers that are fine-tuned by composition of cellulose, lignin and xylan is elucidated via revealing their surface energy and adhesion. Xylan additive resulted in thin fibers and decreased surface energy of the fiber outer surfaces compared to the cellulose fibers, or when lignin was used as an additive. Lignin increased the water contact angle on the fiber surface and decreased adhesion force between the fiber cross section and a hydrophilic probe, confirming that lignin reduced fiber surface affinity to water. Lignin and xylan enabled fiber decoration with charged groups that could tune the adhesion force between the fiber and an AFM probe. The fibers swelled in water: the neat cellulose fiber cross section area increased 9.2%, the fibers with lignin as the main additive 9.1%, with xylan 6.8%, and the 3-component fibers 5.5%. This indicates that dimensional stability in elevated humidity is improved in the case of 3-component fiber compared to 2-component fibers. Xylan or lignin as an additive neither improved strength nor elongation at break. However, improved deformability was achieved when all the three components were incorporated into the fibers.Graphical abstract
SUBMITTER: Nypelo T
PROVIDER: S-EPMC6105199 | biostudies-literature | 2018
REPOSITORIES: biostudies-literature
Nypelö Tiina T Asaadi Shirin S Kneidinger Günther G Sixta Herbert H Konnerth Johannes J
Cellulose (London, England) 20180619 9
<h4>Abstract</h4>Surface chemistry of regenerated all-wood-biopolymer fibers that are fine-tuned by composition of cellulose, lignin and xylan is elucidated via revealing their surface energy and adhesion. Xylan additive resulted in thin fibers and decreased surface energy of the fiber outer surfaces compared to the cellulose fibers, or when lignin was used as an additive. Lignin increased the water contact angle on the fiber surface and decreased adhesion force between the fiber cross section a ...[more]