Unknown

Dataset Information

0

Pharmacokinetics and Model-Based Dosing to Optimize Fludarabine Therapy in Pediatric Hematopoietic Cell Transplant Recipients.


ABSTRACT: A prospective multicenter study was conducted to characterize the pharmacokinetics (PK) and pharmacodynamics (PD) of fludarabine plasma (f-ara-a) and intracellular triphosphate (f-ara-ATP) in children undergoing hematopoietic cell transplantation (HCT) and receiving fludarabine with conditioning. Plasma and peripheral blood mononuclear cells (PBMCs) were collected over the course of therapy for quantitation of f-ara-a and f-ara-ATP. Nonlinear mixed-effects modeling was used to develop the PK model, including identification of covariates impacting drug disposition. Data from a total of 133 children (median age, 5 years; range, .2 to 17.9) undergoing HCT for a variety of malignant and nonmalignant disorders were available for PK-PD modeling. The implementation of allometric scaling of PK parameters alone was insufficient to describe drug clearance, particularly in very young children. Renal impairment was predicted to increase drug exposure across all ages. The rate of f-ara-a entry into PBMCs (expressed in pmoles per million cells) decreased over the course of therapy, resulting in 78% lower f-ara-ATP after the fourth dose (1.7 pmoles/million cells [range, .2 to 7.2]) compared with first dose (7.9 pmoles/million cells [range, .7 to 18.2]). The overall incidence of treatment-related mortality (TRM) was low at 3% and 8% at days 60 and 360, respectively, and no association with f-ara-a exposure and TRM was found. In the setting of malignancy, disease-free survival was highest at 1 year after HCT in subjects achieving a systemic f-ara-a cumulative area under the curve (cAUC) greater than 15?mg*hour/L compared to patients with a cAUC less than 15 mg*hour/L (82.6% versus 52.8% P?=?.04). These results suggest that individualized model-based dosing of fludarabine in infants and young children may reduce morbidity and mortality through improved rates of disease-free survival and limiting drug-related toxicity. ClinicalTrials.gov Identifier: NCT01316549.

SUBMITTER: Ivaturi V 

PROVIDER: S-EPMC6108324 | biostudies-literature | 2017 Oct

REPOSITORIES: biostudies-literature

altmetric image

Publications

Pharmacokinetics and Model-Based Dosing to Optimize Fludarabine Therapy in Pediatric Hematopoietic Cell Transplant Recipients.

Ivaturi Vijay V   Dvorak Christopher C CC   Chan Danna D   Liu Tao T   Cowan Morton J MJ   Wahlstrom Justin J   Stricherz Melisa M   Jennissen Cathryn C   Orchard Paul J PJ   Tolar Jakub J   Pai Sung-Yun SY   Huang Liusheng L   Aweeka Francesca F   Long-Boyle Janel J  

Biology of blood and marrow transplantation : journal of the American Society for Blood and Marrow Transplantation 20170703 10


A prospective multicenter study was conducted to characterize the pharmacokinetics (PK) and pharmacodynamics (PD) of fludarabine plasma (f-ara-a) and intracellular triphosphate (f-ara-ATP) in children undergoing hematopoietic cell transplantation (HCT) and receiving fludarabine with conditioning. Plasma and peripheral blood mononuclear cells (PBMCs) were collected over the course of therapy for quantitation of f-ara-a and f-ara-ATP. Nonlinear mixed-effects modeling was used to develop the PK mod  ...[more]

Similar Datasets

| S-EPMC7674053 | biostudies-literature
| S-EPMC3280823 | biostudies-literature
| S-EPMC10748085 | biostudies-literature
| S-EPMC8092537 | biostudies-literature
| S-EPMC7674054 | biostudies-literature
| S-EPMC2964055 | biostudies-other
| S-EPMC8669916 | biostudies-literature
| S-EPMC7862213 | biostudies-literature
| S-EPMC7172262 | biostudies-literature
| S-EPMC7710331 | biostudies-literature