Roles of aberrant hemichannel activities due to mutant connexin26 in the pathogenesis of KID syndrome.
Ontology highlight
ABSTRACT: Germline missense mutations in GJB2 encoding connexin (Cx) 26 have been found in keratitis, ichthyosis and deafness (KID) syndrome. We explored the effects of three mouse Cx26 mutants (Cx26-G12R, -G45E and -D50N) corresponding to KID syndrome-causative human mutants on hemichannel activities leading to cell death and the expression of immune response-associated genes. We analyzed the 3D images of cells expressing wild-type (WT) or mutant Cx26 molecules to demonstrate clearly the intracellular localization of Cx26 mutants and hemichannel formation. High extracellular Ca2+ conditions lead to the closure of gap junction hemichannels in Cx26-G12R or Cx26-G45E expressing cells, resulting in prohibition of the Cx26 mutant-induced cell death. Fluorescent dye uptake assays revealed that cells with Cx26-D50N had aberrantly high hemichannel activities, which were abolished by a hemichannel blocker, carbenoxolone and 18?-Glycyrrhetinic acid. These results further support the idea that abnormal hemichannel activities play important roles in the pathogenesis of KID syndrome. Furthermore, we revealed that the expressions of IL15, CCL5, IL1A, IL23R and TLR5 are down-regulated in keratinocytes expressing Cx26-D50N, suggesting that immune deficiency in KID syndrome expressing Cx26-D50N might be associated not only with skin barrier defects, but also with the down-regulated expression of immune response-related genes.
SUBMITTER: Taki T
PROVIDER: S-EPMC6110719 | biostudies-literature | 2018 Aug
REPOSITORIES: biostudies-literature
ACCESS DATA