Unknown

Dataset Information

0

Mitochondrial-Localized Versus Cytosolic Intracellular CO-Releasing Organic PhotoCORMs: Evaluation of CO Effects Using Bioenergetics.


ABSTRACT: While interactions between carbon monoxide (CO) and mitochondria have been previously studied, the methods used to deliver CO (gas or CO-releasing metal carbonyl compounds) lack subcellular targeting and/or controlled delivery. Thus, the effective concentration needed to produce changes in mitochondrial bioenergetics is yet to be fully defined. To evaluate the influence of mitochondrial-targeted versus intracellularly released CO on mitochondrial oxygen consumption rates, we developed and characterized flavonol-based CO donor compounds that differ at their site of release. These molecules are metal-free, visible light triggered CO donors (photoCORMs) that quantitatively release CO and are trackable in cells via confocal microscopy. Our studies indicate that at a concentration of 10 ?M, the mitochondrial-localized and cytosolic CO-releasing compounds are similarly effective in terms of decreasing ATP production, maximal respiration, and the reserve capacity of A549 cells. This concentration is the lowest to impart changes in mitochondrial bioenergetics for any CO-releasing molecule (CORM) reported to date. The results reported herein demonstrate the feasibility of using a structurally tunable organic photoCORM framework for comparative intracellular studies of the biological effects of carbon monoxide.

SUBMITTER: Soboleva T 

PROVIDER: S-EPMC6117112 | biostudies-literature | 2018 Aug

REPOSITORIES: biostudies-literature

altmetric image

Publications

Mitochondrial-Localized Versus Cytosolic Intracellular CO-Releasing Organic PhotoCORMs: Evaluation of CO Effects Using Bioenergetics.

Lazarus Livia S LS   Esquer Hector J HJ   Anderson Stacey N SN   Berreau Lisa M LM   Benninghoff Abby D AD  

ACS chemical biology 20180705 8


While interactions between carbon monoxide (CO) and mitochondria have been previously studied, the methods used to deliver CO (gas or CO-releasing metal carbonyl compounds) lack subcellular targeting and/or controlled delivery. Thus, the effective concentration needed to produce changes in mitochondrial bioenergetics is yet to be fully defined. To evaluate the influence of mitochondrial-targeted versus intracellularly released CO on mitochondrial oxygen consumption rates, we developed and charac  ...[more]

Similar Datasets

| S-EPMC196555 | biostudies-literature
| S-EPMC9298253 | biostudies-literature
| S-EPMC4873619 | biostudies-literature
| S-EPMC5364997 | biostudies-literature
| S-EPMC6646885 | biostudies-literature
| S-EPMC6046640 | biostudies-literature
| S-EPMC3268005 | biostudies-literature
| S-EPMC6986360 | biostudies-literature
2021-12-01 | GSE182781 | GEO
| S-EPMC3058880 | biostudies-literature