Unknown

Dataset Information

0

Genome plasticity in response to stress in Tetrahymena thermophila: selective and reversible chromosome amplification and paralogous expansion of metallothionein genes.


ABSTRACT: Extreme stress situations can induce genetic variations including genome reorganization. In ciliates like Tetrahymena thermophila, the approximately 45-fold ploidy of the somatic macronucleus may enable adaptive responses that depend on genome plasticity. To identify potential genome-level adaptations related to metal toxicity, we isolated three Tetrahymena thermophila strains after an extended adaptation period to extreme metal concentrations (Cd2+ , Cu2+ or Pb2+ ). In the Cd-adapted strain, we found a approximately five-fold copy number increase of three genes located in the same macronuclear chromosome, including two metallothionein genes, MTT1 and MTT3. The apparent amplification of this macronuclear chromosome was reversible and reproducible, depending on the presence of environmental metal. We also analysed three knockout (KO) and/or knockdown (KD) strains for MTT1 and/or MTT5. In the MTT5KD strain, we found at least two new genes arising from paralogous expansion of MTT1, which encode truncated variants of MTT1. The expansion can be explained by a model based on somatic recombination between MTT1 genes on pairs of macronuclear chromosomes. At least two of the new paralogs are transcribed and upregulated in response to Cd2+ . Altogether, we have thus identified two distinct mechanisms, both involving genomic plasticity in the polyploid macronucleus that may represent adaptive responses to metal-related stress.

SUBMITTER: de Francisco P 

PROVIDER: S-EPMC6117198 | biostudies-literature | 2018 Jul

REPOSITORIES: biostudies-literature

altmetric image

Publications

Genome plasticity in response to stress in Tetrahymena thermophila: selective and reversible chromosome amplification and paralogous expansion of metallothionein genes.

de Francisco Patricia P   Martín-González Ana A   Turkewitz Aaron P AP   Gutiérrez Juan Carlos JC  

Environmental microbiology 20180522 7


Extreme stress situations can induce genetic variations including genome reorganization. In ciliates like Tetrahymena thermophila, the approximately 45-fold ploidy of the somatic macronucleus may enable adaptive responses that depend on genome plasticity. To identify potential genome-level adaptations related to metal toxicity, we isolated three Tetrahymena thermophila strains after an extended adaptation period to extreme metal concentrations (Cd<sup>2+</sup> , Cu<sup>2+</sup> or Pb<sup>2+</sup  ...[more]

Similar Datasets

| S-EPMC1405887 | biostudies-literature
| S-EPMC6205968 | biostudies-literature
| S-EPMC5716537 | biostudies-literature
| S-EPMC5667856 | biostudies-literature
| S-EPMC3311841 | biostudies-literature
| S-EPMC2863955 | biostudies-literature
| S-EPMC3815263 | biostudies-literature
| S-EPMC1449751 | biostudies-literature
| S-EPMC2519767 | biostudies-literature
| S-EPMC2954822 | biostudies-literature