Unknown

Dataset Information

0

A fundamental catalytic difference between zinc and manganese dependent enzymes revealed in a bacterial isatin hydrolase.


ABSTRACT: The catalytic mechanism of the cyclic amidohydrolase isatin hydrolase depends on a catalytically active manganese in the substrate-binding pocket. The Mn2+ ion is bound by a motif also present in other metal dependent hydrolases like the bacterial kynurenine formamidase. The crystal structures of the isatin hydrolases from Labrenzia aggregata and Ralstonia solanacearum combined with activity assays allow for the identification of key determinants specific for the reaction mechanism. Active site residues central to the hydrolytic mechanism include a novel catalytic triad Asp-His-His supported by structural comparison and hybrid quantum mechanics/classical mechanics simulations. A hydrolytic mechanism for a Mn2+ dependent amidohydrolases that disfavour Zn2+ as the primary catalytically active site metal proposed here is supported by these likely cases of convergent evolution. The work illustrates a fundamental difference in the substrate-binding mode between Mn2+ dependent isatin hydrolase like enzymes in comparison with the vast number of Zn2+ dependent enzymes.

SUBMITTER: Sommer T 

PROVIDER: S-EPMC6117287 | biostudies-literature | 2018 Aug

REPOSITORIES: biostudies-literature

altmetric image

Publications

A fundamental catalytic difference between zinc and manganese dependent enzymes revealed in a bacterial isatin hydrolase.

Sommer Theis T   Bjerregaard-Andersen Kaare K   Uribe Lalita L   Etzerodt Michael M   Diezemann Gregor G   Gauss Jürgen J   Cascella Michele M   Morth J Preben JP  

Scientific reports 20180830 1


The catalytic mechanism of the cyclic amidohydrolase isatin hydrolase depends on a catalytically active manganese in the substrate-binding pocket. The Mn<sup>2+</sup> ion is bound by a motif also present in other metal dependent hydrolases like the bacterial kynurenine formamidase. The crystal structures of the isatin hydrolases from Labrenzia aggregata and Ralstonia solanacearum combined with activity assays allow for the identification of key determinants specific for the reaction mechanism. A  ...[more]

Similar Datasets

| S-EPMC4118100 | biostudies-literature
| S-EPMC5455348 | biostudies-literature
| S-EPMC5238795 | biostudies-literature
| S-EPMC9917282 | biostudies-literature
| S-EPMC7352413 | biostudies-literature
| S-EPMC8908208 | biostudies-literature
| S-EPMC2566308 | biostudies-literature
| S-EPMC5838623 | biostudies-literature
| S-EPMC8491163 | biostudies-literature
| S-EPMC1716760 | biostudies-literature