A fine-mapping study of central obesity loci incorporating functional annotation and imputation.
Ontology highlight
ABSTRACT: A recent genome-wide association study (GWAS) of central obesity identified 27 loci, from sex-combined analysis, associated with waist-to-hip ratio adjusted for body-mass index (WHRadjBMI) in European-ancestry individuals. Nevertheless, the identified variants may not be the biological causal ones due to the presence of linkage disequilibrium (LD). To better understand the mechanisms underlying the identified loci from the GWAS meta-analysis, we first imputed summary statistics at GWAS loci to increase genetic resolution, and then we applied a Bayesian statistical fine-mapping method through PAINTOR, incorporating LD structure and functional annotations to select and prioritize the most plausible causal variants across WHRadjBMI-associated regions. Using adipose tissue- and cell-specific annotations that showed significant associations with WHRadjBMI, we identified 33 single-nucleotide polymorphisms (SNPs) from 27 sex-combined fine-mapping loci with posterior probability of causality greater than 0.9. Six of the selected 33 SNPs belong to at least one of the top five identified annotations. SNPs rs1440372 (SMAD6) and rs12608504 (JUND) are particularly important since they not only have associated functional annotations but are also GWA hits in the original study. Incorporation of functional annotations helps identify additional plausible causal variants, such as rs2213731 (DNM3-PIGC) and rs4531856 (JUND), that did not reach genome-wide significance in GWAS. Our results provide promising candidates for future functional validation experiments.
SUBMITTER: Zhang X
PROVIDER: S-EPMC6117358 | biostudies-literature | 2018 Sep
REPOSITORIES: biostudies-literature
ACCESS DATA