Unknown

Dataset Information

0

A study paradigm integrating prospective epidemiologic cohorts and electronic health records to identify disease biomarkers.


ABSTRACT: Defining the full spectrum of human disease associated with a biomarker is necessary to advance the biomarker into clinical practice. We hypothesize that associating biomarker measurements with electronic health record (EHR) populations based on shared genetic architectures would establish the clinical epidemiology of the biomarker. We use Bayesian sparse linear mixed modeling to calculate SNP weightings for 53 biomarkers from the Atherosclerosis Risk in Communities study. We use the SNP weightings to computed predicted biomarker values in an EHR population and test associations with 1139 diagnoses. Here we report 116 associations meeting a Bonferroni level of significance. A false discovery rate (FDR)-based significance threshold reveals more known and undescribed associations across a broad range of biomarkers, including biometric measures, plasma proteins and metabolites, functional assays, and behaviors. We confirm an inverse association between LDL-cholesterol level and septicemia risk in an independent epidemiological cohort. This approach efficiently discovers biomarker-disease associations.

SUBMITTER: Mosley JD 

PROVIDER: S-EPMC6117367 | biostudies-literature | 2018 Aug

REPOSITORIES: biostudies-literature

altmetric image

Publications

A study paradigm integrating prospective epidemiologic cohorts and electronic health records to identify disease biomarkers.

Mosley Jonathan D JD   Feng QiPing Q   Wells Quinn S QS   Van Driest Sara L SL   Shaffer Christian M CM   Edwards Todd L TL   Bastarache Lisa L   Wei Wei-Qi WQ   Davis Lea K LK   McCarty Catherine A CA   Thompson Will W   Chute Christopher G CG   Jarvik Gail P GP   Gordon Adam S AS   Palmer Melody R MR   Crosslin David R DR   Larson Eric B EB   Carrell David S DS   Kullo Iftikhar J IJ   Pacheco Jennifer A JA   Peissig Peggy L PL   Brilliant Murray H MH   Linneman James G JG   Namjou Bahram B   Williams Marc S MS   Ritchie Marylyn D MD   Borthwick Kenneth M KM   Verma Shefali S SS   Karnes Jason H JH   Weiss Scott T ST   Wang Thomas J TJ   Stein C Michael CM   Denny Josh C JC   Roden Dan M DM  

Nature communications 20180830 1


Defining the full spectrum of human disease associated with a biomarker is necessary to advance the biomarker into clinical practice. We hypothesize that associating biomarker measurements with electronic health record (EHR) populations based on shared genetic architectures would establish the clinical epidemiology of the biomarker. We use Bayesian sparse linear mixed modeling to calculate SNP weightings for 53 biomarkers from the Atherosclerosis Risk in Communities study. We use the SNP weighti  ...[more]

Similar Datasets

| S-EPMC5081968 | biostudies-literature
| S-EPMC10503059 | biostudies-literature
| S-EPMC5052552 | biostudies-literature
| S-EPMC8373357 | biostudies-literature
| S-EPMC3932460 | biostudies-literature
| S-EPMC10781957 | biostudies-literature
| S-EPMC8276667 | biostudies-literature
| S-EPMC10274978 | biostudies-literature
| S-EPMC10910523 | biostudies-literature
| S-EPMC5144921 | biostudies-literature