Unknown

Dataset Information

0

Effective Neural Photostimulation Using Indium-Based Type-II Quantum Dots.


ABSTRACT: Light-induced stimulation of neurons via photoactive surfaces offers rich opportunities for the development of therapeutic methods and high-resolution retinal prosthetic devices. Quantum dots serve as an attractive building block for such surfaces, as they can be easily functionalized to match the biocompatibility and charge transport requirements of cell stimulation. Although indium-based colloidal quantum dots with type-I band alignment have attracted significant attention as a nontoxic alternative to cadmium-based ones, little attention has been paid to their photovoltaic potential as type-II heterostructures. Herein, we demonstrate type-II indium phosphide/zinc oxide core/shell quantum dots that are incorporated into a photoelectrode structure for neural photostimulation. This induces a hyperpolarizing bioelectrical current that triggers the firing of a single neural cell at 4 ?W mm-2, 26-fold lower than the ocular safety limit for continuous exposure to visible light. These findings show that nanomaterials can induce a biocompatible and effective biological junction and can introduce a route in the use of quantum dots in photoelectrode architectures for artificial retinal prostheses.

SUBMITTER: Bahmani Jalali H 

PROVIDER: S-EPMC6117749 | biostudies-literature | 2018 Aug

REPOSITORIES: biostudies-literature

altmetric image

Publications


Light-induced stimulation of neurons via photoactive surfaces offers rich opportunities for the development of therapeutic methods and high-resolution retinal prosthetic devices. Quantum dots serve as an attractive building block for such surfaces, as they can be easily functionalized to match the biocompatibility and charge transport requirements of cell stimulation. Although indium-based colloidal quantum dots with type-I band alignment have attracted significant attention as a nontoxic altern  ...[more]

Similar Datasets

| S-EPMC6805044 | biostudies-literature
| S-EPMC6013914 | biostudies-literature
| S-EPMC10540256 | biostudies-literature
| S-EPMC8146827 | biostudies-literature
| S-EPMC5048650 | biostudies-literature
| S-EPMC5997383 | biostudies-literature
| S-EPMC5465571 | biostudies-literature
| S-EPMC7764319 | biostudies-literature
| S-EPMC6610543 | biostudies-literature
| S-EPMC2346610 | biostudies-literature