Unknown

Dataset Information

0

Second-order nonlinear optical switching with a record-high contrast for a photochromic and thermochromic bistable crystal.


ABSTRACT: Nonlinear optical (NLO) switchable materials are important for photonic and optoelectronic technologies. One important issue for NLO photoswitching, the most studied physical switching approach, is how to improve the switching contrast of second harmonic generation (SHG) in crystals, because the known values are generally below 3 times. Thermoswitching, as another approach, has shown impressive high SHG-switching contrasts (4-? times), but the fast decay of thermally induced states demands constant heat sources to maintain specific SHG intensities. We have synthesized a photochromic and thermochromic bistable acentric compound, ?-[(MQ)ZnCl3] (MQ+ = N-methyl-4,4'-bipyridinium), which represents the first crystalline compound with both photo- and heat-induced SHG-switching behavior and the first example of a thermoswitchable NLO crystal that can maintain its expected second-order NLO intensity without any heat source. The SHG-switching contrast can reach about 8 times after laser irradiation or 2 times after thermal annealing. The former value is the highest recorded for photoswitchable NLO crystals. This work also indicates that higher SHG-switching contrasts may be obtained through increasing electron-transfer efficiency, variation of permanent dipole moment, and self-absorption.

SUBMITTER: Xing XS 

PROVIDER: S-EPMC6118235 | biostudies-literature | 2017 Nov

REPOSITORIES: biostudies-literature

altmetric image

Publications

Second-order nonlinear optical switching with a record-high contrast for a photochromic and thermochromic bistable crystal.

Xing Xiu-Shuang XS   Sa Rong-Jian RJ   Li Pei-Xin PX   Zhang Ning-Ning NN   Zhou Zhong-Yuan ZY   Liu Bin-Wen BW   Liu Jie J   Wang Ming-Sheng MS   Guo Guo-Cong GC  

Chemical science 20170920 11


Nonlinear optical (NLO) switchable materials are important for photonic and optoelectronic technologies. One important issue for NLO photoswitching, the most studied physical switching approach, is how to improve the switching contrast of second harmonic generation (SHG) in crystals, because the known values are generally below 3 times. Thermoswitching, as another approach, has shown impressive high SHG-switching contrasts (4-∞ times), but the fast decay of thermally induced states demands const  ...[more]

Similar Datasets

| S-EPMC3345893 | biostudies-literature
| S-EPMC8762641 | biostudies-literature
| S-EPMC6648906 | biostudies-literature
| S-EPMC6686028 | biostudies-literature
| S-EPMC5365064 | biostudies-literature
| S-EPMC7165163 | biostudies-literature
| S-EPMC5327479 | biostudies-literature
| S-EPMC5577114 | biostudies-literature
| S-EPMC8458761 | biostudies-literature
| S-EPMC2669306 | biostudies-literature