Unknown

Dataset Information

0

Energy cost associated with moving platforms.


ABSTRACT:

Background

Previous research suggests motion induced fatigue contributes to significant performance degradation and is likely related to a higher incidence of accidents and injuries. However, the exact effect of continuous multidirectional platform perturbations on energy cost (EC) with experienced personnel on boats and other seafaring vessels remains unknown.

Objective

The objective of this experiment was to measure the metabolic ECs associated with maintaining postural stability in a motion-rich environment.

Methods

Twenty volunteer participants, who were free of any musculoskeletal or balance disorders, performed three tasks while immersed in a moving environment that varied motion profiles similar to those experienced by workers on a mid-size commercial fishing vessel (static platform (baseline), low and high motions (HMs)). Cardiorespiratory parameters were collected using an indirect calorimetric system that continuously measured breath-by-breath samples. Heart rate was recoded using a wireless heart monitor.

Results

Results indicate a systematic increase in metabolic costs associated with increased platform motions. The increases were most pronounced during the standing and lifting activities and were 50% greater during the HM condition when compared to no motion. Increased heart rates were also observed.

Discussion

Platform motions have a significant impact on metabolic costs that are both task and magnitude of motion dependent. Practitioners must take into consideration the influence of motion-rich environments upon the systematic accumulation of operator fatigue.

SUBMITTER: Duncan CA 

PROVIDER: S-EPMC6119458 | biostudies-literature | 2018

REPOSITORIES: biostudies-literature

altmetric image

Publications

Energy cost associated with moving platforms.

Duncan Carolyn A CA   MacKinnon Scott N SN   Marais Jacques F JF   Basset Fabien A FA  

PeerJ 20180829


<h4>Background</h4>Previous research suggests motion induced fatigue contributes to significant performance degradation and is likely related to a higher incidence of accidents and injuries. However, the exact effect of continuous multidirectional platform perturbations on energy cost (EC) with experienced personnel on boats and other seafaring vessels remains unknown.<h4>Objective</h4>The objective of this experiment was to measure the metabolic ECs associated with maintaining postural stabilit  ...[more]

Similar Datasets

| S-EPMC8062035 | biostudies-literature
| S-EPMC4604043 | biostudies-literature
| S-EPMC8325245 | biostudies-literature
| S-EPMC5147837 | biostudies-literature
| S-EPMC8422065 | biostudies-literature
| S-EPMC3948093 | biostudies-literature
| S-EPMC10754833 | biostudies-literature
| S-EPMC8941066 | biostudies-literature
| S-EPMC5579476 | biostudies-other
| S-EPMC8482482 | biostudies-literature