Size-Tunable Natural Mineral-Molybdenite for Lithium-Ion Batteries Toward: Enhanced Storage Capacity and Quicken Ions Transferring.
Ontology highlight
ABSTRACT: Restricted by the dissatisfied capacity of traditional materials, lithium-ion batteries (LIBs) still suffer from the low energy-density. The pursuing of natural electrode resources with high lithium-storage capability has triggered a plenty of activities. Through the hydro-refining process of raw molybdenite ore, containing crushing-grinding, flotation, exfoliation, and gradient centrifugation, 2D molybdenum disulfide (MoS2) with high purity is massively obtained. The effective tailoring process further induce various sizes (5, 2, 1 and 90 nm) of sheets, accompanying with the increasing of active sites and defects. Utilized as LIB anodes, size-tuning could serve crucial roles on the electrochemical properties. Among them, MoS2-1 ?m delivers an initial charge capacity of 904 mAh g-1, reaching up to 1,337 mAh g-1 over 125 loops at 0.1 A g-1. Even at 5.0 A g-1, a considerable capacity of 682 mAh g-1 is remained. Detailedly analyzing kinetic origins reveals that size-controlling would bring about lowered charge transfer resistance and quicken ions diffusion. The work is anticipated to shed light on the effect of different MoS2 sheet sizes on Li-capacity ability and provides a promising strategy for the commercial-scale production of natural mineral as high-capacity anodes.
SUBMITTER: Jiang F
PROVIDER: S-EPMC6121191 | biostudies-literature | 2018
REPOSITORIES: biostudies-literature
ACCESS DATA