Nucleotide Composition of Human Ig Nontemplated Regions Depends on Trimming of the Flanking Gene Segments, and Terminal Deoxynucleotidyl Transferase Favors Adding Cytosine, Not Guanosine, in Most VDJ Rearrangements.
Ontology highlight
ABSTRACT: The formation of nontemplated (N) regions during Ig gene rearrangement is a major contributor to Ab diversity. To gain insights into the mechanisms behind this, we studied the nucleotide composition of N regions within 29,962 unique human VHDJH rearrangements and 8728 unique human DJH rearrangements containing exactly one identifiable D gene segment and thus two N regions, N1 and N2. We found a distinct decreasing content of cytosine (C) and increasing content of guanine (G) across each N region, suggesting that N regions are typically generated by concatenation of two 3' overhangs synthesized by addition of nucleoside triphosphates with a preference for dCTP. This challenges the general assumption that the terminal deoxynucleotidyl transferase favors dGTP in vivo. Furthermore, we found that the G and C gradients depended strongly on whether the germline gene segments were trimmed or not. Our data show that C-enriched N addition preferentially happens at trimmed 3' ends of VH, D, and JH gene segments, indicating a dependency of the transferase mechanism upon the nuclease mechanism.
SUBMITTER: Funck T
PROVIDER: S-EPMC6121214 | biostudies-literature | 2018 Sep
REPOSITORIES: biostudies-literature
ACCESS DATA