Ontology highlight
ABSTRACT: Background
A. paniculata is widely known for its medicinal values and is traditionally used to treat a wide range of diseases such as cancer, diabetes, skin infections, influenza, diarrhoea, etc. The phytochemical constituents of this plant possess unique and interesting biological activities. The main focus of this study was to evaluate the antibacterial property of crude ethyl acetate (CEA) extract of A. paniculata against E. coli clinical isolates along with molecular docking of 10 different bioactive components from this plant with CTX-M-15.Methods
CEA extract was subjected to phytochemical and FTIR analysis. The E. coli isolates were tested for antibiotic susceptibility through disk-diffusion method to observe their resistance pattern towards different antibiotics. Antibacterial activity and biofilm assay were performed through broth microdilution using a 96-well microplate. CEA extract was further utilized to observe its effect on the expression of a gene encoding CTX-M-15. Finally, in-silico studies were performed where 10 different bioactive compounds from A. paniculata were molecularly docked with CTX-M-15.Results
Phytochemical and FTIR analysis detected the presence of various secondary metabolites and functional groups in CEA extract respectively. Molecular docking provided the number of residues and bond lengths together with a positive docking score. Antibiotic susceptibility showed the multi-drug resistance of all the clinical strains of E. coli. The antibacterial and antibiofilm efficiency of CEA extract (25, 50 and 100 ?g/ml) was tested and 100 ?g/ml of the extract was more effective in all the strains of E. coli. All 3 ESBL producing strains of E. coli were subjected to gene expression analysis through PCR. Strains treated with 100 ?g/ml of the extract showed a downregulation of the gene encoding CTX-M-15 compared to untreated controls.Conclusions
The utilization of CEA extract of A. paniculata proved an economical way of controlling the growth and biofilm formation of ESBL strains of E. coli. CEA extract was also able to downregulate the expression of a gene encoding CTX-M-15. Molecular docking of 10 different bioactive compounds from A. paniculata with CTX-M-15 provided the residues and bond lengths with a positive docking score.
SUBMITTER: Rasool U
PROVIDER: S-EPMC6122548 | biostudies-literature | 2018 Sep
REPOSITORIES: biostudies-literature
BMC complementary and alternative medicine 20180903 1
<h4>Background</h4>A. paniculata is widely known for its medicinal values and is traditionally used to treat a wide range of diseases such as cancer, diabetes, skin infections, influenza, diarrhoea, etc. The phytochemical constituents of this plant possess unique and interesting biological activities. The main focus of this study was to evaluate the antibacterial property of crude ethyl acetate (CEA) extract of A. paniculata against E. coli clinical isolates along with molecular docking of 10 di ...[more]